Journal of Chemical and Pharmaceutical Research (ISSN : 0975-7384)

header
Reach Us reach to JOCPR whatsapp-JOCPR +44 1625708989
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Original Articles: 2014 Vol: 6 Issue: 8

Removal of cations using ion-binding copolymer involving 8-hydroxyquinoline 5-sulphonic acid and semicarbazide with formaldehyde by batch equilibrium technique

Abstract

A new copolymer (8-QSSF) has been synthesized by the condensation of 8-hydroxyquinoline 5-sulphonic acid and semicarbazide with formaldehyde in the presence of acid catalyst at 120 ºC was proved to be a selective chelating ion-exchange copolymer for certain metal ions. A copolymer composition has been determined on the basis of their elemental analysis and the number average molecular weight of this copolymer was determined by conductometric titration in non-aqueous medium. The viscosity measurements in dimethylsulphoxide(DMSO) has been carried out with a view to ascertain the characteristic functions and constants. The newly synthesized copolymer resin was characterized by electronic spectra, FTIR spectra, 13CNMR and 1HNMR spectra. The copolymer has been further characterized by absorption spectra in non-aqueous medium to elucidate the structure. Ion-exchange properties of this resin was studied by batch equilibrium method for Fe3+, Cu 2+, Ni2+, Zn2+, Co2+, Cd2+, Hg2+ and Pb2+ ions over the pH range, 1.5 to 6.5 and in media of various ionic strengths. The resin shows a higher selectivity for Fe3+ ion over any other ions. Study of distribution ratio as a function of pH indicates that the amount of metal ion taken by resin is increases with the increasing pH of medium. The surface morphology of the copolymer resin was examined by scanning electron microscopy and it establishes the transition state between crystalline and amorphous nature.