Available online <u>www.jocpr.com</u>

Journal of Chemical and Pharmaceutical Research, 2016, 8(2):551-555

Research Article

ISSN : 0975-7384 CODEN(USA) : JCPRC5

Virtual screening of enzyme inhibitory activity of active components of *Spirulina fusiformis* against selected enzymes involved in glycemic control

Kadar Basha S., Giridharan R., Jerine Peter S., Udhaya Lavinya B. and Evan Prince Sabina*

School of Biosciences and Technology, VIT University, Vellore, Tamilnadu, India

ABSTRACT

Diabetes mellitus (DM) has affected 7% of the world's adult population. Spirulina fusiformis is a rich nutritional supplement which is non-toxic and has antidiabetic, antioxidant and hypolipidaemic activity. Our study was aimed to investigate the in silico inhibitory effect of the chosen active compounds of Spirulina(3Z-phycocyanobilin, β -carotene and Vitamin B12) against human xanthine oxidoreductase, human glycogen synthase kinase 3- β , α -glucosidase, human aldose reductase and α -amylase. The docking experiments were carried out using Patch Dock server. PyMol molecular viewer was used for the analysis of patterns of interaction of the ligands against the chosen receptors. Vitamin B12 revealed significant interactions showing six hydrogen bonds each with human xanthine oxidoreductase and human glycogen synthase kinase 3- β . The potential of vitamin B12 in this regard needs to be studied further by appropriate in vivo models.

Keywords: Spirulina, Active components, Diabetes, Insilico

INTRODUCTION

Diabetes mellitus (DM) is a metabolic disorder which cause defect in insulin secretion. This will affect the organs of nerves, blood vessels and also the increase the blood glucose level[1]. World Health Organism has reported that the diabetes mellitus would become the world's seventh deadly disease in 2030[2]. 7% of world's adult populations are suffering due to DM[3]. DM is one of the major health issues in developed and developing countries[4]. The International Diabetes Federation (ID) reported that 40.9 million of Indians are affected by DM which will increase to 69.9 million by the year 2025[5]. Recent report has showed that diabetes could cause vascular complication which is due to oxidative stress[3,6]. In younger age DM will lead to cataract problem. Due to diabetes mellitus lens of the eyes would be affected seriously, which may not be treated by insulin therapy. DM would lead to renal disease at the final stage[7].

Molecular docking helps the chemist to discover a new drug in lees time and less coast[8]. Docking studies is performed to analysis the active binding site of Spirulina which predicts its effectiveness. The active sites contain its highly conserved amino acid[9].

Evan Prince Sabina et al

EXPERIMENTAL SECTION

RECEPTOR DESIGNING:

Structure of receptors Human glycogen synthase kinase $3-\beta$ (PDB id: 3SAY), Alpha-glucosidase (PDB id: 3WY1), Human Aldose Reductase(PDB id: 4PR4) and Alpha amylase (PDB id: 4PR4) were derived from RCSB (Research Collaborator for Structural Bioinformatics) protein data bank (http://www.rcsb.org/pdb/home/home.do). The structure of protein is prepared for docking by removing water molecule and adding hydrogen molecule[10].

Table 1: Us	ed receptors	for molecula	r docking

S. No.	Receptor	PDB Id.
1	Human xanthine oxidoreductase	2EIQ
2	Human glycogen synthase kinase 3-β	3SAY
3	Alpha-glucosidase	3WY1
4	Human Aldose Reductase	4PR4
5	Alpha amylase	4W93

LIGAND DESIGNING:

PubChem database (http://pubchem.ncbi.nlm.nih.gov) is used to retrieve the canonical smile of the active compound of spirulina like (3Z)-Phycocyanobilin, β -carotene and vitamin B12. PDB structure of each ligand is obtained from the Corina Molecular Network (https://www.molecular-networks.com/online_demos/corina_demo) by pasting its canonical smile.

Table 2: Characteristics of the active compound of Spirulina

Molecule Name	Molecule formula	Molecular weight (g/mol)	PubChem compound Id.
(3Z)-Phycocyanobilin	$C_{33}H_{38}N_4O_6$	586.67802	5280816
β-carotene	$C_{40}H_{56}$	536.87264	5280489
Vitamin B12	C63H88CoN14O14P	1355.365177	16212801

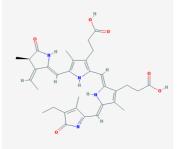


Figure 1: (3Z)-Phycocyanobilin

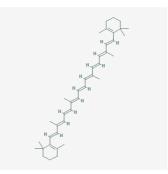


Figure 2: β-carotene



Figure 3: Vitamin B12

ANALYSES OF DOCKED COMPLEX:

Structure of docked complex is analyzed using PyMOL software which describe about its intermolecular interaction[8].Length of the hydrogen bond and the active site is been labeled.

RESULTS AND DISCUSSION

Ligand	Receptor	Score	Area	ACE	No of Bonds	Residue
3Z-Phycocyanobilin		6796	878.90	-323.14	4	ASP-59,LYS-57,ASN-288,ALA-302
		6446	840.70	-322.51	4	VAL-259,SER-347,ARG-394,ILE-353
β-carotene 2E10	2E10	7884	964.90	-149.58	Nil	
	2EIQ	7316	980.80	-392.60	INII	
Vitamin B12		10104	1340.50	-379.74	6	GLU-23,ARG-394,SER-1126,ARG-508,GLY-502
		9060	1296.60	-487.08	6	TRP- 1329, ALA-432, ASP-360, GLU-263, SER-1226
27 Dhyaaayanahilin		6420	794.50	-224.71	2	ASN-64,ARG-223
3Z-Phycocyanobilin		6164	775.90	-367.68	Nil	
β-carotene	3SAY	7336	902.30	-213.41	Nil	
	JSAI	6820	794.90	-340.43	INII	
Vitamin B12		10224	1329.70	-410.99	6	TYR-71, TYR-288, THR-59, LYS-36, GLU-290, THR-43
Vitamin B12		10044	1350.10	-463.28	Nil	
3Z-Phycocyanobilin		7184	881.60	-129.47	1	ARG-450
5Z-Phycocyanobilin		6204	847.30	-193.38	2	ASN-447, ASN-46
β-carotene	3WY1	7310	793.90	-140.21	Nil	
p-carolene	3 W 11	6690	972.90	-368.26		
Vitamin B12		8938	1106.70	-158.37	3	ASN-447, GLN-439, ALA- 343
vitanini D12		8390	1205.30	-446.50	4	ASP-485, GLN-536, THR-410, GLY-416
27 Dharran and ilin		5532	734.40	-357.61	Nil	
3Z-Phycocyanobilin		5012	716.50	-438.18	INII	
ρ constants	4PR4	7552	976.00	-238.50	Nil	
β-carotene		5876	850.90	-424.63	INII	
Vitamin B12		7914	1007.90	-325.20	1	ASP-98
		7058	1241.30	-694.40	2	PHE-121, SER-302
3Z-Phycocyanobilin		5750	710.10	-142.68	2	HIS-299,TYR-62
		5372	699.70	-365.71	2	SER-113,THR-71
β-carotene	433402	6458	836.80	-233.22	NIL	
	4W93	6452	789.70	-338.68		
Wite min D12	1	7524	876.90	-273.65	3	ASP-197,THR-163,ARG-161
Vitamin B12		6650	868.50	-177.96	2	THR-114,GLU233

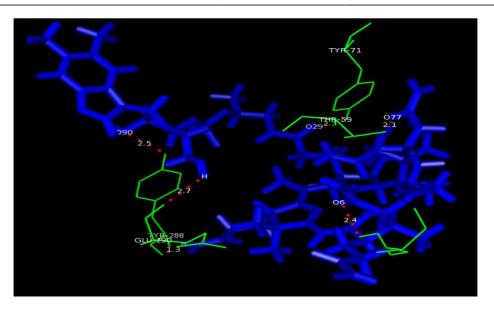


Figure 4: 3SAY docked with Vitamin B12

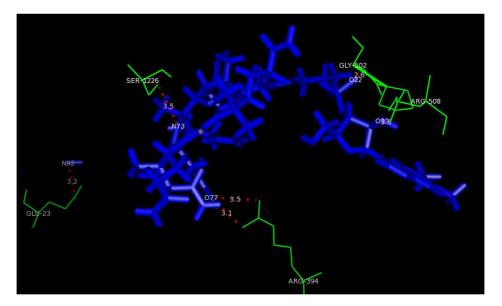


Figure 5: 2E1Q docked with Vitamin B12

High interacting residue and hydrogen bond was observed in the docked complex of 3SAY with Vitamin B12 (Figure 4) and 2E1Q with Vitamin B12 (Figure 5). The interacting residue and the bond length of 3SAY with Vitamin B12 (Figure 4) are TYR-71:- 2.3, TYR-288:-2.5, THR-59:-2.1, LYS-36:-2.4, GLU-290:- 2.7 and THR-43:-3.3 respectively. The interacting residue and the bond length of 2E1Q with Vitamin B12 (Figure 5) are GLU-23:-3.2,ARG-394:-3.1 and 3.5,SER-1126:-3.5,ARG-508:-3.6,GLY-502:-2.6 respectively. The interacting residue and the bond length of 3WY1 with Vitamin B12 (Figure 6) are ASP-485:-1.5, GLN-536:-2.9, THR-410:-3.2, GLY-416:-2.3 respectively. The biomass of Spirulina is reported to be used as Antidiabetic [11],[12]and antioxidant agent[13].Vitamin B12 is observed to show high significant effect which is followed by 3Z-Phycocyanobilin. There is no interaction found in the docked complex of different enzymes withβ-carotene.

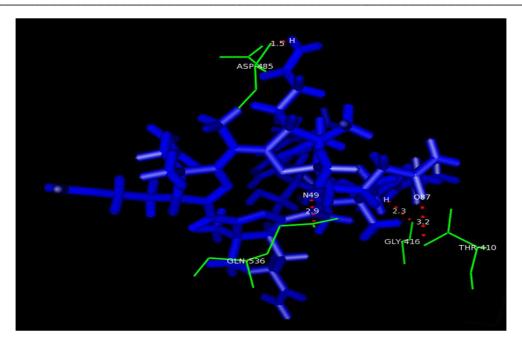


Figure 6: 3WY1 docked with Vitamin B12

CONCLUSION

In silico interaction of vitamin B12 is observed to possess high inhibitory effect compared to the other active compounds. The docked complex of vitamin B12 with human glycogen synthase kinase $3-\beta$ is predicted to possess high inhibitory effect. This could be further studied by gene expression studies.

Acknowledgement

The authors are thankful to VIT University for providing the necessary facilities to carry out this research project.

REFERENCES

[1] Y-G Chen, P Li, P Li, R Yan, X-Q Zhang, Y Wang, et al. Molecules., 2013, 18(4), 4221–4232.

[2] S Imran, M Taha, NH Ismail, SM Kashif, F Rahim, W Jamil, et al.Eur. J. Med. Chem., 2015, 105, 156–170.

[3] PVA Babu, D Liu, ER Gilbert. J. Nutr. Biochem., 2013, 24(11), 1777–1789.

[4] A Hunyadi, A Martins, T-J Hsieh, A Seres, I Zupkó. Wagner B, ed. PLoS ONE., 2012, 7(11), e50619.

[5] V Mohan, S Sandeep, R Deepa, B Shah, C Varghese. Indian J. Med. Res., 2007, 125(3), 217-30.

[6] A Machha, FI Achike, AM Mustafa, MR Mustafa. Nitric Oxide., 2007, 16(4), 442–447.

[7] M Stefek. Interdiscip. Toxicol., 2011, 4(2).

[8] R Pingaew, A Saekee, P Mandi, C Nantasenamat, S Prachayasittikul, S Ruchirawat, et al.Eur. J. Med. Chem., 2014, 85, 65–76.

[9] M Yar, M Bajda, L Shahzadi, SA Shahzad, M Ahmed, M Ashraf, et al. Bioorganic Chem., 2014, 54, 96–104.

[10] R Rodriguez, G Chinea, N Lopez, T Pons, G Vriend. Bioinformatics., 1998, 14(6), 523-528.

[11] I Setyaningsih, M Bintang, N Madina. Procedia Chem., 2015, 14, 211–215.

[12] T-S Vo, D-H Ngo, S-K Kim. In: Kim S-K, ed. *Handbook of Marine Microalgae*. Boston: Academic Press; 2015:299–308.

[13] E Rodríguez De Marco, ME Steffolani, CS Martínez, AE León. LWT - Food Sci. Technol., 2014, 58(1), 102–108.