Available online www.jocpr.com

Journal of Chemical and Pharmaceutical Research, 2@, 6(10):727-738

ISSN : 0975-7384

Research Article CODEN(USA) : JCPRC5

Virtual screening againstMycobacterium tuberculosis isocitrate lyase andn
silico ADME-Tox evaluation of Top Hits

Nina Abigail B. Clavio® and Junie B. Billoned?

'OVPAA-EIDR Program: Computer-aided Discovery of Compounds for the Treatment of Tuberculosisin the
Philippines, Department of Physical Sciences and Mathematics, College of Arts and Sciences
?|nstitute of Pharmaceutical Sciences, National Institutes of Health, University of the Philippines Manila, Taft
Avenue, Ermita, Manila, Philippines

ABSTRACT

Isocitrate lyase (ICL) is a key factor for the maintenance of latent tuberculosis infection. ICL catalyses the first
committed step of the carbon-conserving glyoxylate bypass, the reversible cleavage of isocitrate into succinate and
glyoxylate. Since Mycobacterium tuberculosisqtMTh) has no back-up mechanism that can take over the role of ICL
once it is inhibited, the ICL enzyme is an attractive target for inhibition and discovery of anti-TB drugs. Structure-
based pharmacophore generation has beenused here in virtual screening of database compounds andde novo
evolution method was employed in subsequent hit optimization. Accordingly, the strucutre of ICL was modeled and
a pharmacophore was generated based on the structure of the binding site. Subsequent pharmacophore-based
screening of one million compounds yielded 17 hits with greater binding energies than that of the natural substrate.
The derivative of each hit showed even much stronger binding affinities. Both set of original and modified hit
compounds were evaluatedin silico for their ADME-Tox properties. The results showed that Ligands O (242372)
and P (Amb9999830), and derivatives ofD (Compound2099"), E (Compound3796"), K (Compound556"), N
(STOCK1N-12208"), and P (Amb9999830") possess promising drug-like properties and can be pursued as leads in
the search for novel antitubercular agents.

Keywords: Mycobacterium tuberculosis; anti-tuberculosis compuds; isocitrate lyase; pharmacophore; ADMET;
TOPKAT; computer-aided drug discovery

INTRODUCTION

Tuberculosis is one of the most widespread infestimday than at any other time in human histotyQlrrently,
one-third of the world’s population is infected wiMycobacterium tuberculosig2]. The latest estimates of the
number of people in the world with TB are almognBlion new cases in 2011 and 1.4 million deathspite the
availability of treatment that will cure most caséd B[3].

In addition to the large number of tuberculosisesad B has become a global public health problecalse of its
resistance to frontline drugs such as the InhAkitbr isoniazid[4]. The emergence of multiple dmegistant,
extensive drug-resistant strains and its assoaiatith HIV has severely affected the fight agaii®. If this
continues, it is anticipated that there will be ath®.9 to 9.9 million new and relapse TB cases yb&r, more than
any other in history[2]. Thus, there is a greatdi@edevelop new drugs that resist persistent T&ction.

Mycobacterium tuberculosis remains persistent in macrophages and gains etlergygh the glyoxylate pathway
bypass to maintain its long-term existence in temdls. Therefore it is possible to stop persisterigédtions by
interrupting the glyoxylate bypass in which the yane isocitrate lyase plays a main role [5].Isotérigase is a key
rate-limiting enzyme in the glyoxylate cycle[6]aisda very important factor in the persistencédb[5], [7]. It is a
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unique enzyme that playsrole in the glyoxylate cycle, an anaplerotic path of the tricarboxylic acid cyc[8].
This allows bacteria to grow on acetate or fattg@as sole carbon srces[9].ICL has been found to be essen
for survival in the host [10], [11]Sincethe glyoxylate pathway has not been observed in mmeleg[12], ICL is
considered an appropriatrget of new ar-tubercular drugs.

Experimental techniques used in identification miibitors of MTb growth are very expensive, ti-consuming,
tedious,and requires sophisticated systems for controliivggrisk of infection. This is where theoreticathaiques
such adn silico docking come of importanc Nowadays, rational drug discovery cannot be accisimgd without
the use of important disciplinesich as chemoinformatics and bioinformatics. In, facthe field related with th
discovery of more effective anfiB drugs, several families of compounds have béstodered with the applicatic
of computational approaches[18l4], then synthesized and tested as @Btiagents through inhibition of differe
targets proteins iMTb such as DNA gyrase subunit A, DNA gyrase subunitBBpy-[acyl-carrier-protein]
reductase (InhA), Fibonectin#iding protein (, Pantothenate synthetase, and Peptide deforn15]. In silico
determination of compounds with potential -TB effects have indeed been very useful in estaibigssafer, les-
expensive, shorteime experiments In this work,one million componds were screened using a pharphace
model generated from the structure of ICL. Afterfpeming rigid and flexible fitting, the hi¢-scoring compounds
were subsequently docked to the ICL model, thee top hits were rankfdered based on calculated bind
energies. The highinding compounds were then subjected to structomadiification usingde novo evolution
technique. The top hits and derivatives were ffjnavaluatecin silico for for their ADME (absorption, distribution,
metabolism, excretion) artdxicity properties

(a) (b)

Figurel. (a) Ribbon diagram of ICL from Mycobacterium tuberculosis; (b) Molecular overlay representation of the original (geen) and
the prepared (blue) ICL structure (RMSD = 0.980A)

EXPERIMENTAL SECTION
All calculationsweradone using thDiscovery Studio v2.5.5 software [16].

Structural data of ICL protein and compound librari es

The 2.00A-resolution 3D crystatructure of isocitrate lyase (PDB ID: 1F61) wasiesed fromRCSB Protein
Database (www.rcsb.oyg The protein was prepared using tPrepare Protein protocol using the defat
parametersFollowing preparation is thMinimization protocol using the defilt parameters. The RMSD of t
prepared protein was calculated usingSuperimpose Proteinstool.

The following databases were downloaded online: Amb (www.ambinter.com)AMRI (www.amriglobal.com),

Analyticon MEGx and AnalyticoNATx (www.ac-discovery.com), Drug Barfiwww.drugbank.cz, InterBioScreen

(www.ibscreen.com), Otavéwww.otavachemicals.col, and Specs (www.specs.nét)e compounds from the
database were prepared uskiggpare Ligands protocol. All parameter values were sis default except for the
Lipinski filter, which was turned of

Generation of Structure-based Pharmacophore Mod¢

The pharmacophore was generebased on the binding site of ICLhe cavity located within the crystal structi
agrees with the location of the catalytic site sthmaking it a favorable locaticfor pharmacophore generat[17].

The selected binding site locat€ys191, a residue to whic3-bromopyruvate, a known inhibitor to ICL, bin
covalently for effective inhibition. The bindingtsisphere was defined using Binding Ste tool. Thelnteraction

Generation protocol was used to generate the pharmacophorelncodtaining the hydrophot, H-donor, and H-
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acceptor features that are possible sources afagtten in the protein active site. The generatedrmacophore
exhibits 28 features: 8 H-acceptors, 9 H-donordhyidrophobes (Figure 1B).

Screening of Compound Libraries

The preparation of one million compounds was dasiaguthePrepare Ligands protocol;generating conformations
of each compound.The prepared ligands were thersotidated as one databaseuSinigd 3D Database
protocol.The database compounds were subsequendgred using th&creen Library protocol, employing both
rigid fitting and flexible fitting methods. The cqmounds with fit values better than that of 3-brogropate (as
reference) were subjected to further screeningdbaseinding energies from docking calculations.

Molecular Docking

CDOCKER protocol was used for docking each hit to IC&lculate Binding Energies protocol was used for
computing binding affinity of each complex. As camit the binding energy value of the 3-bromopyreviEL
complex was used as baseline. All compounds wittebbinding energy than 3-bromopyruvate were setefor
furtherin silico ADMET screening.

In silico ADME-Toxicity
The compounds with significantly better binding mgyecalculations than 3-bromopyruvate were furtbeneened
through ADMET filters using thADMET and theTOPKAT protocols in DS 2.5.

RESULTS AND DISCUSSION

The preparation of ICL crystal structure (Figure)lgior to virtual screening involves removal oflmouwater
molecules, insertion ofmissing atoms in incomplegtsidues, optimization ofside-chain conformationjeiong of
missing loop regions, and removal ofalternate conédions.Following protein preparation is minimipat step,
where the most stable protein conformation is dated. Minimization relatively changes the confotimi of the
original protein structure. However, superimpositaf the original and optimized structures reveaadRMSD of
0.980A (Figure 2A), which is well within the accapte range [18].

The preparation of the ligands includes the remotduplicate structures, generation of isomerstantbmers, and
generation of 3D conformations[16]. The Lipinskidi was not applied because several studies Hawersthat

some compounds, including many natural productse eecome successful drug candidatesdespite viglatie

Lipinski rule.

Virtual screening allows rapid selection and testii a small subset of compounds predicted to Isiyeificant
interactions with the given biological target ofiadarge database of molecules. It is used totifygootential leads
from a pool of compounds to reduce the number techeened experimentally. The pharmacophore figemethod
has been proven to perform better than traditidpnaking and scoring methods[19], [20],[21].

Two methods of screening were applied: rigid aedilile. In rigid fitting, the conformations are Helgid and the
best fit is computed using the Kabsch algorithmfléxible fitting, the conformations are manipuldteithin a

specified energy threshold to minimize the distanibetween pharmacophore features and mapped atortige 0
molecule[16].

In comparing a ligand and a pharmacophore, theitguafl the mapping is indicated by the fit value.higher fit
value represents a better fit; a perfect mappinteatures would result in a fit value equivalenthe sum of the
weights of the features in the pharmacophore. Tdrapated fit value depends on two parameters: thightse
assigned to the pharmacophore features and howe thes features in the molecule are to the centértheo
corresponding location constraints of the pharmhoop

Compounds that passed the first screening andeitend screening were docked and the binding ersewgéze
determined. Docking small molecules into largestgin molecules is a complex and difficult task.dAcking
algorithm called CDOCKER was used for this. CDOCKER a CHARMMmM (Chemistry at HARvard
Macromolecular Mechanics) based docking tool thertegates random ligand poses and places them igida r
receptor[16]. This type of docking process has bagplied and successful in developing novel drugsfpast
studies with a significant advance in algorithmattimake possible the rapid docking of very largkections of
small molecules into the chosen molecular targét[21
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3-bromopyruvate, a known inhibitcof ICL, bonds covalentlyith Cys191, replacing bromi (Figure 2B). Polar
and hydrogen bonding interactions are also obsemtidthe side chains of His193, Asn313, Ser31338¢é anc
Thr347.1n silico docking of the said inhibitor generates the follogviconserved interactions: polar and hydra
bonding with His193Asn313 and polar interaction with Thr347. The cewmalinteraction of the inhibitor wit
Cys191 is represented by the hydrogen bondingeopdir. The binding energy of the bromopyru-ICL complex
was computed to be -241.8al/mol

Poses were evalwet by calculating their binding energies (BE) (Eab).A negative value represents an exerg
process involved in formation of complexes. A higmeagnitude of BE indicates a larger amount of gy
released, meaning the complex is more stable. Ttgands with more negative binding energies are deied
better hits than the others.

(a) (b)

Figure 2. (a) Structure-based pharmacophore model having 28 features: 8 agqutors (green), 9 donors (magenta), and 11 hydrophes
(cyan); (b) Interaction diagrams of3-bromopyruvate with | CL from experimental study [17]

Table 1. Fit values and binding energies (1F61 with isocitrate, 3-bromopyruvate,and all compounds that passed the first and secor
screening tests

Fit Value Fit Value

Compound Il pioid Fitting)  (Flexible Fitting) A€ (keal/mol
socitrate 192604 1.09821 7220.64900
Bromopyruvat 1.97716 2.04992 -241.36700

A Compound307 3.62451 420447  -470.11200
B Compound159 3.58727 421420  -440.97200
C  Compound256 3.39119 424184  -419.80400
D Compound20¢ 357533 435659  -417.10300
E  Compound379 3.34673 454883  -407.94900
F  Compound184 3.39011 417372 -391.36800
G Compound328 3.61701 447318  -381.42800
H  Compound30¢ 3.41389 416772 -373.59000
| Compound230 3.88637 414698  -373.28300
J Compound113 411509 454553  -337.38327
K  Compounds5 3.06064 416101  -289.22700
L 24262 3.82169 405676  -25526800
M Compound2 3.51158 4.16257 -253.95800
N STOCKIN12208  3.19305 406212 -252.43300
O 24237 3.32685 418598  -243.30200
P AMb999983 3.01088 404842  -226.22300
Q STOCKIN57131  3.11350 400923  -221.37000
R Amb1650679 3.36358 420179 -207.51100
S Compound124 3.40000 4.03323 -180.54665
T Amb1658832 3.82795 4.01267 -173.11400
U  Amb796888; 3.82174 429916 -172.20600
V  Amb190964 3.85222 42066 -171.78100
W Amb1667927 3.63792 4.09489 -155.72400
X  Amb1665114 3.56912 439881 -139.63900

Only 17 compounds out of the 24 that passed theeting tests are predicted to hainhibitory activity against
ICL. These top 17 were considered structural modification. Thdata on the number and typeinteractions that
the top 17 compounds makéth ICL are summarized in Table 2.It can be seen thabihdit, Compound3076, h
more polar and van der Waals interactions with Ban the isocitra-ICL complex. Most of the residues fou
from the isocitratdCL complex have been observed to have interactiaitts Compound3076 (Figure 4A). It h
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hydrogen bonding interactions with the side chaifisGlul55, Glul82, His393 and GIn394, van der Waals
interactions with Pro107, GIn109, His180, GIn184ul85, Alal86, Lys189, Gly196, Ala234, Thr286, 1882
Gly287, Asn313, Ser315, Pro316, Ser317, Phe31&4iMmr_eu348, charge interactions with Glu155, GRia8d
Lys197, and several polar interactions with Trp83p108, Ser110, Asp153, Glul55, Alal56, Glul182,18%;
Lys197, Arg228, Ala233, Thr235, Glu285, His393 aalh394. A lot of the mentioned interactions areegibsn
isocitrate, which may be the cause of its lowedlrig energy compared with Compound3076. This oladienv is
also evident with the other top hits. Structuretheftop 17 hits are shown in Figure 3.

Furthermore, it was observed that most of the &iras of the hit compounds consist of subunitslamid that of
the structure of isocitrate. This is indicativebépredicted binding interactions with ICL and thiperior binding
affinities in comparison with its natural substrate

Table 2. Number of interactions in each of the topCL-ligand complexes

Compound AG (kcal/mol) Polar VDW H-bonds Charged Pi

Isocitrate -220.649 14 2 5 8 0

Bromopyruvate -241.367 14 2 3 8 0
A Compound3076 -470.112 15 19 4 3 0
B Compound1596 -440.972 13 15 5 0 1
C Compound2563 -419.804 14 16 5 0 1
D Compound2099 -417.103 14 14 5 2 0
E  Compound3796 -407.949 17 11 4 1 0
F  Compound1842 -391.368 19 12 7 4 0
G Compound3284 -381.428 14 13 5 0 1
H Compound3092 -373.590 12 15 3 0 3
I Compound2307 -373.283 21 11 3 1 1
J  Compound1134 -337.383 14 13 3 0 0
K Compound556 -289.227 11 19 3 0 0
L 242621 -255.268 16 10 1 0 1
M  Compound29 -253.958 14 10 5 0 1
N  STOCKI1N-12208 -252.433 10 19 1 0 1
O 242372 -243.302 13 16 5 0 0
P Amb9999830 -226.223 9 15 1 0 3
Q STOCKIN-57131 -221.370 7 20 3 0 1

Chemical modification. With the desire to seek out compounds with befigdibg energies, the top 17 compounds
were modified using thBe Novo Evolution protocol. This method allows for the generatiomufitiple molecules
by adding one fragment at a time with only theefittretained in the population[16]. An advantag¢hefde novo
approach is that the program automatically maxisizeding by exhausting all the available chemsgace. The
top ranking molecules (in terms of binding energfyg@ach original molecule were considered.

The modifications to each ligand have resulteddtteld (more negative) binding energies (Table 3chHEcomplex
has had an increase in the number of interactiarying depending on which addition has been me#gfal in
giving better binding energies. Compound3076 k#l the highest binding energy even after modifinatwhile
the rest of the top 17 have rearranged their rgskihnmodified Compound3076 (Figure 4A) has a BE4@D.11
kcal/mol. It has increased t&40.623 kcal/mol upon addition of dimethylamine ethicauses an additional
hydrogen interaction with Ala233 at the active $kgure 4B).Structures of each modified compousr@sshown in
Figure 5.
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(K) Compound556
(J) Compound1134 CaoHs:010 (L) 242621
CoH32014 Ca6H2gN100sS

(M) Compound29 (N) STOCK1N-12208
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CieH2:N4O4S

Figure 3. Structures of the top 17 hits afterrigidand flexible screening, and molecular docking
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Table 3. Binding energies of thdest derivative of the top hits(superscript M = modified)

Compound ID Binding Energy (kcal/mol)

A Compound307% -540.623
B  Compound159% -496.211
C Compound256% -486.759
D Compound2099 -492.706
E Compound3796 -523.500
F  Compound184% -448.255
G Compound3284 -445.778
H Compound3092 -430.567
I Compound230'% -434.805
J  Compound113% -383.698
K  Compound554 -431.072
L 242621 -331.955
M  Compound2y -344.361
N STOCKI1N-1220% -345.253
O 24237% -332.275
P Amb999983Y -326.073
Q STOCKIN-5713Y% -351.776
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Figure 4. (a)Interaction diagram of Compound3076 and ICL complex (b) Diagram of the interactions between ICL and thebest
derivative of Compound3076

Moreover, we have also performed ADMET calculatisoasfurther identify screening hits which have pial
ADMET issues. Accordingly, we calculated the caogenicity, mutaenicity, developmental toxicity potential, a
aerobic biodegradability properties of the top hitgl their derivatives. The TOPKAT module in DiscgvStudio
utilizes statistical models to predict specificitmtogical effects solely from chemical strure. It uses a patented
algorithm that determines whether a structure Vigghin the Optimum Prediction Space (OPS) of a eetipe
model. Within the OPS, the model is applicableh# result of the toxicity assessment of a compasinekll within
the CPS limit, the prediction or computed probabilityédatively accurate or has a high chance of bagty. If the
assessment is within OPS, but the assessmenttishth@ompound is not toxic then there is a higancie tha
indeed it is not toxic. Iflte assessment is within OPS and the assessmabat thé compound is toxic, then ther:
a high chance that the compound is t[16]. A good drug has low toxicity issues: is not hepatic;has nc
cytochrome P450 inductiolimbilities; should be relatively stable while teding in the system for it to reach t
pathogen; and it should not be degraded by themeegyof the human host. FurthermcADMET Descriptors
protocol in DS help in predicting dr-like properties such as good human intestinal gdtigor, optimal aqueot
solubility, nonCYP2D6 inhibitor, no-hepatotoxic, and has less than 90% plasma binditgip probability
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Figure 5. Structures of the best derivative of top 17 hits afteide novoevolution optimization
Table 4.Predicted toxicity properties for the top lits
Compound ID Weight of Evidenct Ames Developmental Toxicit' Aerobic
Carcinogenicity Ca Mutagenicity Potential Biodegradability
A Compound3076 Nowarcinogeni Non-mutagenic Toxic Non-degradable
B  Compound1596 Nonarcinogeni Non-mutagenic Toxic Non-degradable
C Compound2563 Nooarcinogeni Non-mutagenic Toxic Non-degradable
D Compound2099 Nonarcinogeni Non-mutagenic Toxic Non-degradable
E  Compound3796 Nooarcinogeni Non-mutagenic Toxic Non-degradable
F  Compound1842 Nonarcinogeni Non-mutagenic Toxic Non-degradable
G Compound3284 Nonarcinogeni Non-mutagenic Toxic Non-degradable
H Compound3092 Nonarcinogeni Non-mutagenic Toxic Non-degradable
I Compound2307 Nowarcinogeni Non-mutagenic Toxic Non-degradable
J  Compoundl1134 Nocarcinogeni Non-mutagenic Toxic Biodegradable
K Compound556 Normarcinogeni Non-mutagenic Non-toxic Biodegradable
L 242621 Nonearcinogeni Non-mutagenic Toxic Biodegradable
M Compound29 Norzarcinogeni Non-mutagenic Toxic Biodegradable
N STOCK1N-12208 Norcarcinogeni Mutagenic Toxic Non-degradable
O 242372 Norearcinogeni Non-mutagenic Toxic Non-degradable
P Amb9999830 Normarcinogeni Non-mutagenic Non-toxic Non-degradable
Q STOCKI1N-57131 Carcinogenic Non-mutagenic Non-toxic Non-degradable
Table 5Predicted toxicity properties for the best derivative of the top hitgsuperscript M = modified)
Weight of Evidenct Ames Developmental Toxicit Aerobic
Compound ID ? - - - . .
Carcinogenicity Ca Mutagenicity Potential Biodegradability
A Compound307% Non-carcinogeni Non-mutagenic Toxic Degradable
B Compound159% Non-carcinogeni Non-mutagenic Toxic Non-degradable
C Compound256% Non-carcinogeni Non-mutagenic Toxic Degradable
D Compound209% Non-carcinogeni Non-mutagenic Toxic Non-degradable
E Compound3796 Non-carcinogeni Non-mutagenic Toxic Non-degradable
F  Compound184% Non-carcinogeni Non-mutagenic Toxic Degradable
G Compound3284 Non-carcinogeni Non-mutagenic Toxic Non-degradable
H Compound3092 Non-carcinogeni Non-mutagenic Toxic Degradable
I Compound230'% Non-carcinogeni Non-mutagenic Toxic Non-degradable
J  Compound113% Non-carcinogeni Non-mutagenic Toxic Degradable
K  Compound554 Non-carcinogeni Non-mutagenic Non-toxic Non-degradable
L 24262 Non-carcinogeni Non-mutagenic Toxic Degradable
M  Compound2y Non-carcinogeni Non-mutagenic Toxic Degradable
N STOCKIN-12208 Non<arcinogeni Non-mutagenic Toxic Non-degradable
O 24237% Non-carcinogeni Non-mutagenic Toxic Degradable
P  Amb999983Y Non-carcinogeni Non-mutagenic Non-toxic Non-degradable
Q STOCKIN-57131 Non-carcinogeni Non-mutagenic Toxic Non-degradable
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Table 6.Predicted ADMET properties for the top hits

Compound ID Absorption Solubility CYP2D6 Binding  pHgotoxicity Plasma Protein Binding

A Compound3076 Very low Extremely low  Non-inhibitor ~ Toxic Binding > 90%

B  Compound1596 Very low Extremely low  Non-inhibitor ~ Toxic Binding > 90%

C Compound2563 Very low Extremely low  Non-inhibitor ~ Toxic Binding > 90%

D Compound2099 Very low Extremely low  Non-inhibitor ~ Toxic Binding > 90%

E  Compound3796 Very low Extremely low  Non-inhibitor ~ Toxic Binding > 90%

F  Compound1842 Very low Extremely low  Non-inhibitor ~ Toxic Binding > 90%

G Compound3284 Very low Extremely low  Non-inhibitor ~ Toxic Binding > 90%

H  Compound3092 Very low Extremely low  Non-inhibitor ~ Toxic Binding > 90%

I Compound2307 Very low Extremely low  Non-inhibitor ~ Toxic Binding > 90%

J Compound1134 Very low Yes, low Non-inhibitor Toxi Binding > 95%

K Compound556 Very low Yes, optimal Non-inhibitor ofttoxic Binding < 90%

L 242621 Very low Yes, low Non-inhibitor Non-toxic Binding < 90%

M Compound29 Very low Yes, optimal Non-inhibitor Xio Binding > 90%

N  STOCK1N-12208 Moderate Yes, good Non-inhibitor Xito Binding < 90%

O 242372 Very low Yes, optimal Non-inhibitor Norxio Binding < 90%

P Amb9999830 Good Yes, good Inhibitor Non-toxic dirg < 90%

Q STOCKI1IN-57131 Good Yes, optimal Non-inhibitor Noxic Binding < 90%

Table 7. ADMET results for the best derivative of he top hits (superscript M = modified)
Compound ID Absorption  Aqueous Solubility CYP2D@&&ing Hepatotoxicity Plasma Protein Binding

A Compound307% Very low Yes, low Non-inhibitor Toxic Binding < 96
B  Compound159% Very low Extremely low Non-inhibitor Toxic Binding 90%
C Compound256% Very low Extremely low Non-inhibitor Toxic Binding 90%
D Compound2099 Very low Yes, low Non-inhibitor Toxic Binding < 90
E Compound3796 Very low Yes, low Non-inhibitor Toxic Binding < 90
F  Compound184% Very low Yes, low Non-inhibitor Toxic Binding < 90
G Compound3284 Very low Very low Non-inhibitor Toxic Binding > %
H Compound3092 Very low Very low Non-inhibitor Toxic Binding < 90
| Compound2307 Very low Very low Non-inhibitor Toxic Binding > 96
J  Compound113% Very low Yes, low Non-inhibitor Toxic Binding > 95
K  Compound55% Very low Yes, good Non-inhibitor Non-toxic Binding90%
L 242621 Very low Very low Non-inhibitor Toxic Binding < 96
M  Compound2y Very low Yes, good Non-inhibitor Toxic Binding 0%
N STOCKIN-12208 Very low Yes, low Non-inhibitor Toxic Binding < 96
O 24237% Very low Yes, optimal Non-inhibitor Non-toxic Biimty < 90%
P  Amb999983Y Very low Yes, good Non-inhibitor Toxic Binding 0%
Q STOCKIN-5713"  Very low Too soluble Non-inhibitor Non-toxic Bimitj < 90%

Of the 17 hitsi(e. original database compounds), Ligand P (Amb9999888esses all the favorable characteristics
of a drug (Table 4). Ligands A to | and O alsosfgtithese characteristics except that they areigisztito be toxic

in the developmental process. This means that llasg the potential to be drugs but may not be adteied to
pregnant women. However, the OPS limits for all poomds indicate that the unfavorable predictionsautside
the confidence level and that there is good chaémaethese compounds will still turn outto be nori¢.The same
toxicity calculations were done to the modified guuands (Table 5) to see if there would be any dkagkess
issues arising from structure elaboration. Ligalkidsnd P have satisfied all favorable features whitgnds B, D,

E, G, |, and N have satisfied all except that ttested positive to developmental toxicity potentiédwever, these
compounds can still be further pursued as candidatapounds, albeit with possible undesirable effdor
pregnant women. Again, upon consideration of theSQikits, all compounds could stll turn out to benn
toxic.Table 6 shows that among the 17 original,Hifgand Q (STOCK1N-57131) is predicted to possakfive
drug-like characteristics. Others that passedali,one feature are LigandsK, L, N, O, and P. Mueg, the same
ADMET calculations were done to the modified hifgalple 7). The results showed that the moleculese wer
predicted to have very low absorption ability, whis not a favorable property for an oral drug. &itheless, they
can still be delivered to the target site throudferaative modes including the use of appropriategddelivery
systems. Finally, the best top hit derivative basegredicted ADMET properties are Ligands K and O.

CONCLUSION

Structure-based pharmacophore generation, virttr@esing, rigid-body dockingDe Novo optimization, anth
silico ADME-Toxicitycalculations were employed in thisudy to search for possible inhibitors Mfycobacterium
tuberculosislsocitrate Lyase. The pharmacophore consisting8ofl@stered features was used for virtual screening
of several chemical databases that sums up to Homitompounds. ICL-ligand binding energy calcudas
revealed 17 top hits with more favorable bindingrgres than the natural substrate, indicating ptessnhibitory
activities. Subsequently, the top hits were modifising thede novo method and gave even better binding energies
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for each top hit. Calculation of toxicity and ADMBroperties of the hit compounds have resultethéoprediction

of possible leads, namely,unmodified Ligands O @42 and P (Amb9999830), and derivatives ofD
(Compound2099), E (Compound3796), K (Compound558), N (STOCK1N-12208), and P (Amb9999830).
The preparation and experimental bioactivity meaisients on these candidate compounds are underwayr in

group.
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