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ABSTRACT

In practical decision making process, people oftewe to deal with indeterminacy data. To handle #iiuation,
many optimization models involved uncertainty ardely discussed. Specifically, in a supply chaiosts of
transportation and inventory are important factdrs optimizing profits. While, the market demands aften
unknown, especially when a new situation ariseshigpaper, based on uncertainty theory, a newe tyfptwo-stage
programming, named uncertain programming with reseu(UPR) is first put forward. Then, by employihg
expected value of uncertain variable, an equivatdassic programming of UPR is built. Finally, bygarding the
market demands as uncertain variables, UPR modakél to solve the integrating transportation andentory
problem under uncertainty.
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INTRODUCTION

Two-stage stochastic programming was first put &odvby Dantzig [6] in 1955. The linear programming
discussed was divided into two or more stages. Wherfirst stage was determined, later stages dkgokon the
earlier stages and the random demands. By minimitie expected value of the objective functiongguivalent
linear programming model was obtained.

After that, numerous research works have been taidsar to explore its properties and numerical édlgars. In
1967, Agizy [11] discussed two-stage programminghwdiscrete distribution function. Walkup and W¢i9)]
generalized Danzig’s model and considered the mancimefficients in the second stage. Shor and Sladepl3]
gave a penalty vector algorithm to solve the tvamst model in 1968. Kall and Peter [14] proposed an
approximating method for solving two-stage stodbagrogramming with random variables obeying disere
distributions in 1979. Afterwards, many researctikrgeloped the two-stage stochastic programming\aux [1],
Birge [2], Lustig [3], Ruszczynski and Swietanowpkj, Dai [12]).

Fuzzy set theory, introduced by Zadeh [7] [8], bagen widely applied to handling fuzziness. In 208&sed on
credibility theory, Liu [9] introduced a two-stadezzy programming. And then Liu [5] studied twoggafuzzy

random programming in 2007. While, the fuzzy sedotly is facing challenges by many researchers, did

different opinions that human uncertainty can’trb@nifested as fuzziness. Liu [21] pointed out thatmeasure of
union of events is not necessarily the maximum e&sures of individual events.

As everyone knows, we can employ probability whas éstimated probability distribution is approxistatequal
to real frequency. While, in practical problems, mvay encounter the situation that it is difficidtdbtain observed
data. When this happens, people have to depenapmrts’ opinions to evaluate the belief degree #ath event
will occur. However, Kahneman and Tversky [24] gethout that human tends to overweight events wihiel are
unsure of. In this case, some counterintuitiveghiwill arise if we insist on using probability (L[21]). In order to
handle this situation, an uncertainty theory waméted by Liu [17] in 2007 and refined by Liu [20] 2010. After
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that, many researchers widely studied the unceyttieory and made significative progress.

In 2009, uncertain programming was first proposgd.in [18]. Then, an uncertain multi-objective pragiming
and an uncertain goal programming were providedibyand Chen [22]. Later in the time, an uncertaiulti-level
programming was put forward by Liu and Yao [23].ph&sent, uncertain programming has wined widespusa in
engineering, management and design, such as inyemtoblem [25], Chinese postman problem [26], anoject
scheduling problem [27].

The context of the above factors results in theivation of this study. In this paper, uncertain gnaamming with
recourse is first proposed. We shall first brigfifroduce uncertainty theory and related concdptthe next section,
after a formulation of the uncertain programminghwiecourse, an equivalent classical programmindehis given.
Then, the effectiveness of this method is verifteg an example. Finally, conclusions and future warke
summarized.

PRELIMINARY

In this section we will provide a brief introduaticof uncertain measure, uncertain variable, explecttue and
uncertain programming, which will be used throudhbis paper.

Definition 1. (Liu [17]) Let [T be a nonempty set arldbe a O -algebra o . Each element in L is called an
event. A set functionM from L to [0,1] is called an uncertain measure if it satisfiesfttiewing axioms:

Axiom 1.(Normality Axiom) M{T} =1 for the universal sef .
Axiom 2.(Duality Axiom) M{/~A +M{ N % for any eveni\.

Axiom 3.(Subadditivity Axiom) For every countable sequentevents A, /\,,---, we have

M{Q/\i}ng{/\}.

The triplet (I",L,M) is called an uncertainty space.
In 2010, Liu [20] defined product uncertain measui& the fourth axiom of uncertainty theory.

Axiom 4.(Product Axiom) Let(I",,L,,M ) be uncertainty spaces fdk =1, 2,--- Then the product uncertain
measure M is an uncertain measure satisfying

M =DM
= k=1
where A\, are arbitrarily chosen events from L fd¢ =1, 2,- -, respectively

An uncertain variable is a real valued function am uncertainty space, which is defined as
follows.

Definition 2. (Liu [17]) Let (I',L,M) be an uncertainty space. An uncertain variable iseasurable function
from an uncertainty spacé to the set of real numbers, i.e., for any Borel &t of real numbers, the set

EYB)={yOr |y OB isanevent
In order to describe uncertain variables, Liu [thfjoduced uncertainty distribution.

Definition 3. (Liu [17]) The uncertainty distribution® of an uncertain variable is defined by
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O(x)=M{{ <}

for any real numberX.

Definition 4. (Liu [17]) An uncertain variable is called linear if it has a linear uncertaintytdisution

0, if x<a
o(x)={(x-a/(b- 9, if a x I
1 if  x=b

denoted by L(a,b) where a and b are real numbers witra < b.

Definition 5. (Liu [19]) The uncertain variables;,&,, -+, ¢, are said to be independent if

M{ﬁ(éﬂa)}=ﬁM{éﬂ$

for any Borel setsB,, B,,---, B, of real numbers.

Theorem 1. (Liu [17]) Let &,&,,---,&, be uncertain variables and be a real-valued measurable function.

Thenf (&,¢,,--+,€,) is an uncertain variable.

To represent the average value of an uncertairabiariin the sense of uncertain measure, the expeetee is
defined as follows.

Definition 6. (Liu [17]) Let & be an uncertain variable. Then the expected vélué ois defined by

+00 0
E[£] :jo M{ &>} dr—j_mM{ E<r dr @)
provided that at least one of the two integrafinise.

Definition 7. (Liu [17]) Let & be an uncertain variable with uncertainty distritiP . If the expected value
exists, then

E[8 = [ @-o() dx- [ (3 dx @

For calculating the expected value by inverse uagdy distribution, Liu and Ha [15] proved the Ifoking
theorem.

Theorem 2. (Liu and Ha [15]) Assume&,,&,,--+,&,, are independent uncertain variables with regulaettainty
distributions ®,, ®,,---, P, respectively. If f(X,X,-:-, %) is strictly increasing with respect to
X, X%,-+, X, and strictly decreasing with respect t& .,X..,,>-, X,, then the uncertain variable
&=1(&,¢,,-+,€,) hasan expected value

E[¢] = .[01 f(o(a), -, P (a),d, (1-0a), P (1-a)da. 3)

Theorem 3. (Liu [20]) For independent uncertain variablés and /77, we have
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Elad +bj] = ald] + bEj
for any real numbers a and b.

Uncertain programming is a type of mathematicalgpamming involving uncertain variables which can be
formulated as follows.

Let X be a decision vector, and be an uncertain vector. Assume thét is an objective function, and
gj(xf), ]=1,2---, p are constraint functions. Note that the uncertainstraints gj(xf), =120 p

do not define a classic feasible set. We suppoae m,a2,~-~,ap are confidence levels of the uncertain

constraints, which represent the uncertain comgdiold with the specified confidence levels. Thie® uncertain
programming (Liu [18]) can be built as follows,

minE[f(x )]
subject ta (4)
M{gj( X’é) SO} 20']-, j=1,"', p.

UNCERTAIN PROGRAMMING WITH RECOURSE

In literature, many researchers have discussedett@urse problem of stochastic and fuzzy progrargmihich

have been applied to many decision problems inténdenacy environments. As mentioned previouslymany
real world situations, we are provided incomplatéimation because of time pressure and lack od.dahis
consideration inspires us to consider the recoprsblem of uncertain programming. Aiming at takungcertainty
theory as the theoretical basis, we propose a hesg ©f recourse problem, named uncertain progragnmith

recourse (UPR), in this section. By using uncetyaiheory listed in the preliminary, UPR is coneegttinto classic
programming. Besides, we consider the case thabtifextive function in the recourse stage is naadm Last, we
give an example to illustrate the UPR model.

Uncertain programming with recourse is formulatedalows,
minZ(x)= ¢ x+ E[myin q %
subject ta
Ax=Db ®)
Wx+ y=> &
x=20,y=0

where X[O R is a decision vector of the first stage problem[] R" is a decision vector of the recourse stage
and cOR, U R, iJ R, Al R, W R, inwhich M,n,m are positive integers and| is a positive
vector. The uncertain vecto€ is denoted by(fl,fz,-~-,fm)T, in which ¢,&,,--+,¢,, are independent

uncertain variables with uncertainty distributio®®,, ®,,---,® . In this paper,0 represents the suitable zero
matrix.

Suppose there exists a feasible solution of tisé $tage problem, and the feasible region is dermgeD, ,
D, ={xOR'[ A ¥= b »x0}. (6)

The recourse stage problem is referred to
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E[min q' y}
y
subject ta @)
Wx+ y= &
y=0.

We suppose that, for alX in D,, the recourse stage problem has at least onéleasilution. Let

a(x &) =min{q y| Wx+ &, w0} = § V. 6)

Since ¢, Gp,..., g, >0, then we havey® = ((&-WX", (&= WX -, (&, — W, X'), in which W
represent thei th lines of W and (§ —WX)" represent the positive parts of& —WXx) for all
i=12---,m. Thus,

q(x,f)=i q(&-wx". )

Suppose that the recourse stage problem has dipib@al solution, which means
D, ={xOR™ | %) <+og. (10)

Obviously, q(x &) is an uncertain variable and its expected valueioted by Q(X) ,

Q¥ =Hd xé)] = E{i Aqs - W)ﬂ- (11)

i=1

Since (X, ¢) s strictly increasing with respect td,, &,,-- -, &,,, and by Theorem 2.3.1 we obtain

Q9= E[q xO]=[1>. g (@)~ wY o 12)

The expected valudQ(X) is called the recourse function of the recouragesprogramming. Thereupon we obtain
a deterministic equivalent programming of the UR&bem

minc’ x+ Q(X)
subject ta (13)
xtD

inwhich D = Dlm D, . As a result, the UPR is converted into a clagsigramming under some assumptions.

In this section, we will discuss a more generahfaf UPR with nonlinear objective functiog(X, ¥) in the
recourse stage,

minZ(x)= & x+ E[min q X 9}
X y
subject ta
Ax=b
Wx+ y=> €&
x=0,y=0.

(14)
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Supposeq(X, V)= o X Y, ¥,---, Y,) is strictly increasing with respect t§,, Y,, -, ¥,,- The rest notations
are identical with Equation (5). By solving the sacse problem, we obtain

a(x &) =min{f x y | Wx- ¢, w0}
=q(x (£ -Wx").

Since q(X, y) is strictly increasing with respect t§;,<,,--+, &, then, by Theorem 2.3.1, the expected value of
the uncertain variableg(X, y) in the recourse stage can be calculated by thanfivlg formula,

QX =Hd x =], § X®(a) - WK (P@) - WK, (®¥(a)- W) a (5)

Thus, through a similar method with the previoustisa, we can convert the UPR problem (14) to eajent crisp
programming problem.

we give an example to illustrate the above method.

Example 1. Giving a UPR problem, supposk[] R is a decision variable of the first stage aydI R is a
decision variable of the recourse stage. The uamicervariable  obeys a linear uncertainty distribution

®(x) = L1,3],
min x+ E[myin V]
subject ta
x-220 (16)
-x=-&+y=0
X, y=0.

By Definition 2.3.3, the uncertainty distributioh &f is

0, if x<1
d(x)=<(x-1)/2 if 1< x<3
1 if X=3.

The recourse function is

a(x6) =min{y* |- x-& + y20, y2 0} =( x-&)*.

Obviously, q(x,¢) is strictly increasing with respect t§ . By Equation (14), we have
QXY =Hd %)= B &7
= j:(x+ O a))2da :1—33+4x+ e

Then we obtain the equivalent classic programming

min x? + 5x+1§3

subject ta (17)
x=-220
x=0.
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Thus, the optimal value iz =55/ 3, when X=2.
CONCLUSION

In this paper, we firstly proposed a general forfruncertain programming with recourse and investidgathe
equivalent classic programming. Finally, a numéreoample was put forward to illustrate the effeetiess of this
method.
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