Available online www.jocpr.com

Journal of Chemical and Phar maceutical Research, 2014, 6(6):2504-2511

ISSN : 0975-7384

Research Article CODEN(USA) : JCPRC5

The system research on trust management in electronic commer ce
Fan Wang

Shandong Youth University of Political Science, Jinan, Shandong, China

ABSTRACT

This thesis will identify what trust management is in the context of the electronic commerce and propose a general
architecture to close the gap between trust and cryptography. | will describe two specific languages for describing
trust policies and a general mechanism for evaluating whether a request for action complies with policy.

Key words: Electronic commerce, trust policies, cryptography

INTRODUCTION

Many activities of growing importance in the “infoation infrastructure," including electronic come®rand
mobile programming, depend critically on precise agliable ways to manage trust. Users will neeknow how
trustworthy information is before they act on iarfexample, they will need to know where the infation comes
from (authentication), what kind of informationist(content), what it can do (capability), and wiestit was altered
during transmission (integrity). Without knowledgewhat or whom to trust, users may treat a pidgeotentially
valuable information as yet another stream of ramduts. Worse yet, malicious parties may lure usate
believing that a false piece of information is twugrthy [1-3].

Many existing mechanisms and protocols addressfgpaspects of trust in the information infrastiue, but none
provides a complete solution. For example, digitghatures allow publishers to create and disteilman-refutable
proofs of authorship of documents. Public key istiractures bind public keys to entities so tharsisan establish
trust chains from digital signatures to signerstadata formats allow creators of information resesror trusted
third parties to make assertions about these ressuitJsers can query and process the trusted iassepefore

deciding what to do with the information resourdeach of these mechanisms and protocols definabsesof all

potential trust problems and solves or partiallyes this subset [4-7].

The goal of my research is to design a completst thianagement infrastructure, in which trust iscjesl,
disseminated, and evaluated in parallel with tliermation infrastructure. | have identified four jo@acomponents
of a trust management infrastructure: the metaftataat, the trust protocol, the trust policy langeaand the
execution environment, which are defined in Chapter. Under this framework of study, | discoveréett most
existing approaches to trust deal with metadatadibs and trust protocols but lacked general trabtylanguages
for specifying user preferences and generic enmemnts for evaluating them. This finding leads to intgrest and
involvement in REFEREE [8-10].

REFEREE is a result of collaboration among reseascfrom AT&T and W3C, including myself. It was dgsed to
be a general-purpose execution environment foMab applications requiring trust. REFEREE evaluatesr
policies in response to a host application's regisesactions. Policies are treated as progranREFEREE. For a
given request, REFEREE invokes the appropriate pséicy and interpreter module and returns to thsth
application an answer (with justification) to thaegtion of whether or not the request complies whth policy
[11-14].

2504

Fan Wang J. Chem. Pharm. Res,, 2014, 6(6):2504-2511

The underlying architecture of REFEREE allows dédfe trust policy languages and trust protocolsdeexist in
one execution environment. They are treated asoaddeftware modules and can be installed or dediest
modularly. At the time of development, we were daaio find a suitable policy language to demonstrat the
features of REFEREE, and so we designed the Psdiil@2 language.

In order to develop a deeper understanding of REFEERNd to demonstrate its feasibility, power, affigiency, |
built a reference implementation of the REFEREEttmanagement system. The implementation includes af
the core REFEREE data types and methods, a PIGScptpand a Profiles-0.92 policy interpreter tcakenate
polices based on the PICS metadata format. Iniaddit implemented another policy language callécsRULZ
and integrated it into the reference implementatiororder to demonstrate REFEREE's ability to thenmdultiple
policy languages in particular and multiple softevanodules generally.

TRUST MANAGEMENT

The term trust management has received a greatofledlention in the network security communitycgnt was
first introduced in the paper "Decentralized Trivinagement" by Blaze, Feigenbaum, and Lacy. Peoale
compared and contrasted these systems and theibitidps and limitations. This article reviews thencept of
"trust management” as the starting point for mysithevork. Later discussions of REFEREE in Chaptezd and
PicsRULZ and Profiles-0.92 in Chapter four addsgsscific components of "trust management". As fdated by
Blaze, Feigenbaum, and Lacy, trust management ssielkethe question "is this request, supported bgeth
credentials, in compliance with this user policyPe paper identified three components of trust rgameent:

@ security policies
® security credentials
@ trust relationships

Security policies are local policies that an aggilmn trusts unconditionally. Security credentiale assertions about
objects by trusted third parties. Trust relatiopshére special cases of security policies. An eXanmpthe paper
illustrated the use and the interactions amondgtiee components:

An electronic banking system must enable a barstate that at least k bank officers are needeg@pooze loans of
$1,000,000 or less (a policy), it must enable &lmmployee to prove that he can be counted as @fduapprovers
(a credential), and it must enable the bank toigpatio may issue such credentials (a trust retetiop). The paper
referred to the study of the three components hait interactions as the trust management probléra. authors
believe that the trust management problem is @ndisand an important aspect of security in netwagkvices and
that such problem can be solved using a generahamégm that is independent of any particular apgibe or

service. They propose is a trust management lagtrajpplications and services can build on togPoficymaker is

a trust management system designed to meet the néduis layer. It is a three-part solution: admatial format to

represent authorization assertions, a securitycpdi@inguage to express user preferences, and acutore

environment to evaluate certificates and policieslicymaker broke new ground by expressing credEntand

policies as programs. The execution environmerstldet a database query engine: The host applitagods to the
execution environment a request for action andea pslicy, and the environment returns an answeheajuestion
of whether the credentials prove that the requesipties with the policy.

TRUST MANAGEMENT INFRASTRUCTURE

A trust management infrastructure is a conceptwahéwork for the design of a coherent solutionddous trust
decisions that must be made in what is commonlerrefl to as the "information infrastructure”. A stru
management infrastructure allows parties to makstéd assertions about objects in the informatidrastructure,
and applications to acquire these assertions ak@ tnast decisions based on them. The framewoitkdispendent
of the trust criteria imposed by any particular laggtion and of the type of assertions made bystéd party.

Figure 1 shows a component dependency graph intrtte# management infrastructure. Diamonds represent
components in the trust management infrastructodeaarows represent dependency relations.

2505

Fan Wang J. Chem. Pharm. Res,, 2014, 6(6):2504-2511

Execution
environment

Trust
protocol

Trust
policy
language

M etadata
format

Figure 1: Dependency Graph of Trust Management | nfrastructure Components

A metadata format is independent of any other campts in the trust management infrastructure. ft ba
distributed by multiple protocols and operated gmultiple trust policy languages. For examplesipossible to
represent SDSI certificates as PICS labels andhese in the SDSI public-key distribution protocol.

POLICYMAKER

PolicyMaker was the first system to take a compmehe approach to trust problems independent ofpanicular
application or service. It has a general metadatandt ("credentials"), a trust policy language, amdexecution
environment. As indicated in Secti@nror! Reference source not found., PolicyMaker does not deal with the trust
protocol component of what | call the trust manageninfrastructureError! Reference source not found. shows

a graphical representation of PolicyMaker in thistimanagement infrastructure.

Execution
environment

policy
language

protocol

M etadata
format

Figure 2: PolicyMaker in the Trust Management Infrastructure

Policymaker has its metadata format called credknti

It broke new ground by treating credentials as @ow. A credential is a type of "assertion." Itdsira predicate,
called a filter, to a sequence of public keys,ethtin authority structure. The form of an asseiiton

Source ASSERTS AuthorityStruct WHERE Filter: Heseurce indicates the source of authority, generafbyblic

key of an entity in the case of a credential agsertAuthorityStruct specifies the public key oryketo which
authority is granted. Filter specifies the natuir¢he authority that is being granted. Both Authgsiruct and Filter
are represented as programs to maximize their gltyerFor example, the following PolicyMaker cretiel
indicates that the source PGP key "0x01234567abbbét2d3e4f5a6b7" asserts that Alice's PGP key is
"0xf0012203a4b51677d8090aabb3cdd9e2f".

Another major innovation in PolicyMaker is the dgon to make credentials and policies the same dfpbject. A
policy is also an assertion. The only differencthat policies are unconditionally trusted locadipd credentials are
not. The source field in a policy assertion is jim keyword "POLICY", rather than the public kefyam entity
granting authority. Credentials are signed assestiand the public key in the source field can ®eduo verify the
signature.

POLICY LANGUAGE

Policy Language shows how the REFEREE executiolir@mwent processes queries, interprets trust galiaind
runs trust protocols in a generic, application-peledent way. To prove that REFEREE is indeed argéperpose
execution environment, | implemented two differgolicy language interpreters as REFEREE modulesyeha
PicsRULZ and Profiles-0.92.

Both PicsRULZ and Profiles-0.92 describe trust e based on PICS labels. While PicsRULZ is carsidly
simpler and easier to use and implement, Profileg-@&s more general and expressive. Section ordifiés the
design goal of a policy language. Sections two thnele describe PicsRULZ and Profiles-0.92 in t&ection four
provides four sample policy scenarios and thepeesve PicsRULZ and Profiles-0.92 translations.

2506

Fan Wang J. Chem. Pharm. Res,, 2014, 6(6):2504-2511

Design Goals

A policy language describes user policy in a maehigadable format. Despite its simple goal, thegiesf a good
policy language may be more than an engineerig #as more complex the language is, the more espre the
policies can be, at the cost of being more difficolimplement, prove correctness, or build a uiserface on top.
This section sets asides these engineering traxjeoitl focuses on the desired properties of ayplaliguage.

Safe

The policy written by a policy language should patise any undesirable side effect to its host egiin. That is,
assuming the underlying policy interpretation isreot, there should be no way to write a valid ppkhat crashes
the host computer.

Transferable

A profile should be transferable among differenplagations and platforms. This property allows rtly a
company to specify a profile for its employees $e on different applications and platforms, bub @siser to carry
his or her profile to other locations without refigoration.

Simple

A policy language should not be a general-purpasgramming language (in the sense of Turing-corapldtut a
simple policy language designed specifically tocdiég trust policies. However, the language shdudgde an
extension mechanism to leave room for future expangd his property comes hand in hand with thetyadad the
transferability of a policy language; a simplerdange is easier to prove safety and more likehetexecuted by an
untrusted party when a policy is being transferred.

Well-defined
A policy written in a policy language should be miaguous irrespective of its specific implementatid is as if
writing a book of law, where the citizens know etkagvhat is legal and not legal.

Expressive

The language construct should be expressive entmgitcommodate realistic policies different useentvto
specify under different circumstances. The levelerpressiveness may depend on programming abifitthe
people creating the policy, or the complexity df tiser interface.

The and operator is the three-valued version ofBbelean and operatoError! Reference source not found.
describes the operation of and when it is given anguments. The first row represent the truth vétuethe first
argument, the first column represent the truth edbr the second argument, and the rest of the cgfiresent the
result of an and operation.

Table 1: Truth tablefor the and oper ator

rulel \ rule2 true unknown false
true true unknown false
unknown Unknown unknown false
false False false false

The and operator can take any number of argumEatsnore than two arguments, and operator recuysieduces
itself one argument at a time: (and argl arg2 ..njxg(and (... (and argl arg2) ... argn)

The and of a single argument is that argumentfit3éle and of no argument is true by definitionolfe of the
arguments return false, the and rule terminatesthadule returns a false, because further evalstivill not
change the outcome of a false.

The or operator: The or operator is the three-\dhkersion of Boolean or operatdrror! Reference source not
found. describes the operation of or when it is given &xguments:

Table 2: Truth Tablefor the or operator

rulel \ rule2 true unknown False
true true true True
unknown true unknown Unknown
false true unknown False

2507

As and operator, or operator can take any numbargfments, and they are recursively reduced ientioain two

Fan Wang J. Chem. Pharm. Res,, 2014, 6(6):2504-2511

arguments are present. The or of a single arguisetitat argument itself. The or of no argumentgalse by
definition. If one of the arguments is evaluatedbt true, the or terminates and returns a trueausec further
evaluation does not change the outcome of a true.

The not operator is the three-valued version of [Bao not operator. It takes exactly one argumé&ntor!
Reference source not found. describes the operation of the not operator:

Table 3: Truth Tablefor the not operator

output
true false
unknown Unknown
false true

The true-if-unknown operator is a projection fuoantifrom three-valued logic to Boolean logic. It¢akexactly one
argument:
Table4: Truth Tablefor thetrue-if-unknown operator

output
true true
unknown true
false false

The false-if-unknown operator is also a projecfiamction from three-valued logic to Boolean lodictakes exactly
one argument:

Tables: Truth Tablefor the false-if-unknown operator

QOutput

true true
unknown false
false false

EXECUTION ENVIRONMENT

An execution environment is the heart of a trushagement system; it is where the local trust padiaheet with
the rest of the trust management infrastructureuth trust protocols and metadata formats, to nvalet decisions
as an interconnected entity. The primary jobs ofeaacution environment are two: interpret trustiqgges and
administer trust protocols. An execution environtrtakes requests from its host application, andrnstan answer
that is compliant with trust policies. REFEREE igls an execution environment proposed by reseadnam
AT&T Labs and W3C, including myself. Under REFEREHjst protocols and trust policies are represemted
software modules, which can be invoked and instatlgnamically. They can share other's intermediatlt
through a commonly agreed API. Together they divigdeghe trust management tasks into pieces, aneé oém as
a whole. At each level of computation, every aspé@EFEREE is under policy control.

Section one lists the design goals of an execivironment in a trust management system. Seationrttroduces
REFEREE, our proposed solution. Section three and flescribes the REFEREE internal architecture and
primitive data types. Sections five and six provastandard procedure to bootstrap and query REEEREe
REFEREE execution environment is an extensible satfdmodifiable execution environment, althouglapears

to the host application as a monolithic tri-valwidion box. The basic computing unit in REFERER module. A
REFEREE module is an executable block of codephatesses input arguments and asserts additi@tahsnts.

It can also defer subtasks to other modules andenaist decisions based on returned assertionstiegthe
interconnected REFEREE modules can process requastshe host application and produce a recomnténta

REFEREE
Module A Module B
(e.g. viewing policy) (e.g. applet policy)
ModuleC Module D
(e.g. PICS) (e.g. RSA-MD5)

Figure 3: Sample block diagram of REFEREE internal structure.Ease of Use

The separation of duty among REFEREE modules hesraleadvantages. First of all, existing modules ba

2508

Fan Wang J. Chem. Pharm. Res,, 2014, 6(6):2504-2511

updated without affecting other modules, as longhasupgraded modules keep the API backward-cobipatror
example, module A and B do not care how module Bfige RSA-MD5 signatures. Therefore module D can b
updated with more optimized code without changiradole A and B. Moreover, new modules can be intcedu
dynamically. For example, if module C starts retognPICS labels with DSA-SHAL signatures that medal
cannot verify, module A can upload a module to hanbte verification. Other modules in REFEREE, ulthg
module B, can then share the new module transpgarent

Zooming in, a REFEREE module looks like the follagifigure 4:

A REFEREE Module

Input API Policy Output API
S —_—>
- an action narr Interpreter A - a tri-value
- additional arguments - alist of statements
Interpreter B

Figure 4: Required interfacefor every REFEREE module

REFEREE REFERENCE IMPLEMENTATION

To verify the REFEREE design as described in thesifh | produced a working REFEREE reference
implementation as part of my thesis. | chose Jawang REFEREE underlying execution environment. The
implementation work included the core REFEREE piirai data types, REFEREE API, PicsRULZ and
Profiles-0.92 interpreters, and a user interfacedéamonstration purpose. REFEREE was ported t@aJdigsoxy as

its host application.

Jigsaw was originally designed as a Web server,se/hmurpose was to provide a basis for experimentag

server-side features. Recently Jigsaw introduc&ient API, which manages requests and perfornterifilg on

behalf of a client. The Jigsaw proxy extracts péitem both the Jigsaw Server and the Client ARk Proxy front
end, responsible for accepting network requestsnaadaging them as a pool of threads, is taken ftemligsaw
Server front end. The proxy back end, responsiteddirecting requests to Web servers, is takem fthe Jigsaw
Client API. This section focuses on the Jigsaw ptoeck end, in which REFEREE is embedded.

The Jigsaw Client API is very simple: it takes ineguest (generally a URL) and returns a reply ¢thatent of the
URL). The API aims to replace the Java standawh.net. URLConneatlass, with the advantages of being more
robust and modular. A simplified architectural figus shown below.

Proxy Proxy Back End (Jigsaw Client API)
Front
End Irequ request (request, reply)
Network = Ingoing HTTP | ——] Outgoing

Filters Filters

Engine

NetWork

reply

Figure5: Jigsaw Proxy Architecture

REFEREE is implemented as an ingoing filter in digsaw proxy. When a request is received, the REFEERter
constructs an equivalent REFEREE request objedghnimcludes an action name and the URL of interéhke
request object is then sent to the REFEREE exeatetiwironment for evaluation. If the output of #aaluation is
true, the filter returns null, allowing the requéstflow through without interruption. If the outpis unknown or
false, the filter returns a default HTML documempressing the request is blocked, along with tratifjoations
returned by REFEREE.

One observation here is that my implementatiorhefligsaw filter has a self-regulating "policy"respond to the
outcome the REFEREE evaluation. That policy is igpfibn specific; it is neither controlled nor ewated by
REFEREE, but by the application itself. This obs¢ion reinforces the fact that REFEREE is
recommendation-based; the burden to enforce tts¢ management decision is on the application itdelfill
discuss more on this aspect in Sectiwnor! Reference source not found..

Recall from Chapter 3, there are two stages in REHE The bootstrap stage corresponds to the indi@n of the
REFEREE filter. The query stage corresponds tarthecation of the REFEREE filter. In addition, Jags provides
a method (callback) to fetch information from thetwork. The fetch callback is implemented as tlgsalv Client
API itself, except it does not have the REFERE€(fiinstalled.

2509

Fan Wang J. Chem. Pharm. Res,, 2014, 6(6):2504-2511

Label loader is a PICS trust protocol implementeé & EFEREE module. There are four required inputraents,

a statement-list, a URL of interest, a rating ssWRL, and a list of label sources. The inputestegnt-list contains

a set of cached PICS labels. When there is a daithkeabel Loader returns the label without fetghihfrom the
network. The URL of interest and the rating senlitieL specify what PICS labels to fetch. A list dages to find
labels includes embedded in a document (by the &eyWEMBEDDED"), via the HTTP header stream (by the
keyword "ALONG-WITH"), or from a list of label buasis.

The returned value is true if any label is foundknown if all label bureaus cannot be contact dsefaf label
bureaus can be contacted but no label is returhbd. returned statements are parsed PICS labelshvare
restructured in a way that are easy for patternchiag and other operations. The exact syntax i€rnnor!
Reference source not found.. An example is illustrated below, assuming a FeefD.92 policy calls Label Loader
(local name "load-label") in the following line:

(invoke "load-label" STATEMENT-LIST URL "http://wwwnusac.org/v1.0"

(EMBEDDED "http://www.bureau.com")

if Label Loader finds only an embedded PICS lab®, returned tri-value is true, and the returnedestent-list
looks like the following:

(("load-label") (("load-label" "http://www.w3.orghrview.html" EMBEDDED) ((version "PICS-1.1") (séce
"http://www.musac.org/v1.0") (by "mailto:mstraussg@earch.att.com") (original (PICS-1.1
"http://www.musac.org/v1.0"

labels by "mailto:mstrauss@research.att.com” rat{sdl v 0)) (ratings (s 1) (v 0)))))

As the thesis is written, the implementation of ttead Label module does not have a running PICSopob
Instead the inputs of the raw PICS labels are plemiby an input stream from the REFEREE filter. The
implementation does parse PICS labels and turn thenREFEREE statements.

CONCLUSION

The REFEREE implementation in the Jigsaw proxy les many insights on how a trust management system
should work in a real-world application. This sentiattempts to address some of the concerns rdisaag the
implementation, and explain how my particular inmpéntation deals with them.

The first concern is the order in which REFEREPIla&ced with respect to other tasks in a host agiiin that are
concurrently affecting the behavior of the applimat Caching is such a conservative task in theadigproxy,
where the order to do trust management and cachatters. | place the REFEREE filter in the highmsicedence,
so it always gets evaluated. It is considered thstmonservative approach, because it would aadyrabserve
time-dependent trust elements, such as expire@wawked certificates, and make correct trust decssioased on
them. However, if performance is more critical tlgeuracy, an application should place the cacfilteg in front
of the REFEREE filter. Determining how the trust magement task interacts with other processes imsi h
application is in a way another "trust policy", ahi outside the scope in which REFEREE can atalu

The second concern is whether actions issued dtin@gvaluation of trust management are subjethéosame
trust management evaluation. For example in theawgoroxy, download-applet requires Label Loadecdlh the
Jigsaw Client API and fetch PICS labels from thewveek. The act of fetching PICS labels itself maydonsidered
as a trust management problem and be subjected labekfetching trust management policy. My current
implementation does not invoke another level o$tthmanagement during a trust management evaluatieject
this idea for two reasons. First, it may introddeadlock if the label-fetching policy in turn regtethe same labels
before the label can be fetched. The same Labealdroaould be called recursively without making qmggress.
Second, | treat the action of fetching PICS lalassa trust protocol that is safe, secure, withoytjadgment of
trust, therefore the action needs not be subjactadrust management decision.

The third concern is whether REFEREE should intoedan explicit caching mechanism for performanesaoa.
Currently REFEREE does not have one, and my imphatien has no mechanism explicitly for cachingpmse.
However, my implementation transparently inherits benefit of Jigsaw's internal caching mechanisacting
filter). When Label Loader needs to fetch labetsrfrthe network, it calls the Jigsaw Client API, whéhe cache
filter is activated. The subsequent call to getshee label will be caught by the caching filterd dience Label
Loader gets caching for free. The observation iegpthat caching is supposed to be transparenttfienmest of the
processes in the application, and REFEREE needsptgment an explicit caching mechanism.

2510

Fan Wang J. Chem. Pharm. Res,, 2014, 6(6):2504-2511

The fourth concern is whether REFEREE can be agipdic independent as promised. As demonstratedhisn t
implementation, the only two pieces that are "Jigsantric" are the Jigsaw filter and the networkcler. The
Jigsaw filter traps requests from its host and &toaps REFEREE. The network fetcher fetches inftiomarom
the network, which are already in place for mostvoek applications. Both of them are consideredimat for an
application to do trust management. The rest of ¢bde can be ported to other applications withow a
modification.

The fifth concern is whether REFEREE introducesastious performance hit for doing trust managemigyt.
implementation takes less than half a second ttuateaof the sample policy in Secti@nror! Reference source
not found., excluding any network time (my implementation gligs all the network information through a fixed
input stream). This observation implies that thétlboeck to do trust management will not be theogation of
REFEREE modules, or evaluation of trust policieathr, the bottleneck will be the use of networkgere fetching
labels from the Web may incur long delays, or the af cryptography, where validating digital sigmats may take
large CPU cycles. They are however, the unavoidatdes to make any trust decisions, but the overloda
REFEREE is minimal.

My thesis identifies the trust management problénthe context of the World Wide Web and providesva-part
solution: REFEREE as the general-purpose execetiironment and PicsRULZ and Profiles-0.92 as thiecy
languages. They utilize the existing trust protescahd metadata formats, and together, they foronglete trust
management infrastructure in which trust is excleangnd established among mutually untrusting sitiean
entrusted information infrastructure.

This thesis has four contributions to the areare$ttmanagement: identify the concept of the trmahagement
infrastructure, with the four basic building blocks the infrastructure. Study current protocols asystems
involving trust and identify their strengths andakeesses. Propose a two-part solution: REFEREE generic

execution environment, and Profiles-0.92 as a lflexitrust policy language. Implement reference ivess of

REFEREE and Profiles-0.92 and prove that the cdnokep generic trust management infrastructure lisadistic

goal. The work on REFEREE and trust managemenrgfisitive or conclusive in its current state, bather that it
is a step forward in the understanding of the ¢atries of trust. Of course, more work is needecparticular, we
need network experts to build robust and yet mifieient metadata formats and trust protocols. Wecdlanguage
experts to define simple and yet expressive trofitylanguages. We need system experts to steicecure and
yet dynamic execution environment. We also need userface experts to deliver a user-friendly ayet

feature-rich user interface to take advantagesufpdisticated trust management infrastructure libnea

REFERENCES

[1]Liu Xiao-lan. China Sport Science and Technology. 1984, 29(13), 46-49.

[2]Luo Yang-chunJournal of Shanghai Physical Education Institute. 1994, 23(12), 46-47.

[3]Wan Hua-zhejournal Of Nanchang Junior College.2010, 3, 154-156.

[4]Li Ke. Journal of Shenyang Sport University. 2012, 31(2), 111-113.

[5]Zzhang Shu-xueJournal of Nanjing Ingtitute of Physical Education. 1995, 31(2), 25-27.

[6]Pan Li.Journal of nanjing institute of physical education(natural science). 2004, 19(1), 54-55.

[7]Li Yu-he; Ling Wen-taoJournal of Guangzhou Physical Education Ingtitute. 1997, 17(3), 27-31.

[8] Xu Guo-gin.Journal Of Hebei Institute Of Physical Education. 2008, 22(2), 70-72.

[9] Chen Qing-hongChina Sport Science and Technology. 1990, 21(10), 63-65

[10] Tian Jun-ningJournal of Nanjing Institute of Physical Education. 2000, 14(4), 149-150.

[11] Zhang B.; Zhang S.; Lu Glournal of Chemical and Pharmaceutical Research, 2013, 5(9), 256-262.
[12] Zhang B.;International Journal of Applied Mathematics and Satistics, 2013, 44(14), 422-430.

[13] Zhang B.; Yue H.lnternational Journal of Applied Mathematics and Satistics, 2013, 40(10), 469-476.
[14] Zzhang B.; Feng Ylnternational Journal of Applied Mathematics and Satistics, 2013, 40(10), 136-143.

2511

