
Available online www.jocpr.com 
 

Journal of Chemical and Pharmaceutical Research, 2014, 6(12):349-358                    
 

 

Research Article ISSN : 0975-7384 
CODEN(USA) : JCPRC5 

 

349 

The quantitative ion character-activity relationship between metal ionic 
properties and their toxicity order numbers through cluster analysis 

 
X. P. Li, L. Jiang, S. S. Li and Y. Li* 

 
Resource and Environmental Research Academy, North China Electric Power University, Beijing, China 

_____________________________________________________________________________________________ 
 
ABSTRACT 
 
The Quantitative Ion Character-Activity Relationship (QICAR) model between metal ionic properties and toxicity 
order numbers (TON) was established assisted with cluster analysis to find out typical metal ionic properties. 
Means while, the multicollinearity among the typical metal ionic properties was minimized by principal component 
analysis during the modeling and obtaining .the QICAR model by multiple linear regression analysis as follows: 
TON = -70.675AR/AW - 0.353|lgKOH| - 28.312σp - 0.537∆E0+ 2.436Xm

2r+ 0.240AN - 0.024Z*2/r+ 0.475N + 26.033. 
It has satisfactory predicted ability with Nash-Suttcliffe Simulation Efficiency Coefficient (NSC) of 0.91 and 
0.85formodel building and testing respectively. The metal ionic propertiesXm

2r, AN and N have positive effects on 
the model, while the metal ionic properties AR/AW, |lgKOH|, σp, ∆E0 and Z*2/r negatively influence the model. Finally, 
sensitivity analysis of the metal ionic properties in QICAR model was carried out to show which metal ionic 
properties have more impact on TON, indicating different impact degree of the metal ionic properties on each 
metal ion. 
 
Keywords: quantitative ion character-activity relationship, toxicity order numbers, cluster analysis, principal 
component analysis, sensitivity analysis 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 
Heavy metals, from various industrial processes, agricultural activities, domestic wastes and vehicle exhaust 
emissions, are often considered one of the most serious pollutants for their high toxicity, bioaccumulation and 
persistence in the environment [1-4].They can alter the biochemical cycles [5].The studies on heavy metals’ 
pollution and their toxicity prediction have received increasing attention in recent years [6]. There are many factors 
affecting the toxicity of heavy metals and the three major factors are metal ionic properties(for example, atomic 
radius, oxidation state, electronegativity, etc.), organism receptor (for example, species, sex, age, etc.) and 
environmental conditions (for example, temperature, pH, exposure length, etc.) [7]. Up till now, most studies have 
been done only focusing on environmental conditions [8], while the other two factors tend to be ignored. 
 
The Quantitative Structure-Activity Relationship (QSAR) model has been used extensively to express structural 
molecular properties with functions (for example, physicochemical properties, biological activities, toxicity, etc.) for 
classes of organic compounds by means of statistical methods. In the 1990s, Newman et al. developed the 
Quantitative Ion Character-Activity Relationship (QICAR)model to predict the relative toxicity of metal ions 
[9].The approach has been successfully applied in various effects, species and media to predict the relative toxicity 
of metal ions since then [9-11]. Simple linear regression models using one metal ionic property |logKOH|,σp, orXm

2r 
were built by Mccloskey, Wolterbeek and Tatara, respectively [11-13]. A model that includes two metal ionic 
properties lgAN/∆IP and ∆E0approved its applicability through tests using toxicity data of Daphniamagna by Kaiser 
et al [14].All of those QICAR models above incorporated very few metal ionic properties and ignored the impact of 
other metal ionic properties. 
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Cluster analysis, known as automatic classification, numerical taxonomy, bryology and typological analysis [15-16], 
is designed to detect hidden groups or clusters, in which the elements behave similarly to each other [17-18]. The 
similarity is generally defined using the measurement of distance and calculated using the difference between the 
measurements [19].The classification of variables could enhance our understanding of the internal rules for 
variables in the same group and find typical variables in each group [20]. 
 
The goals of the current study are to select typical metal ionic properties to build a QICAR model and to predict the 
toxicity of metal ions. Cluster analysis is applied to divide the metal ionic properties into several groups. In each 
group we choose the typical metal ionic property through correlation analysis and the QICAR model will be built by 
multiple linear regression analysis after minimizing the multicollinearity among the typical metal ionic properties 
using principal component analysis. Then, sensitivity analysis is adopted to judge the impact degree of the typical 
metal ionic properties of the model. 
 

EXPERIMENTAL SECTION 
 

Toxicity Data 
Metal ion toxicity data varied largely in exposure time, organism receptors and ambient conditions. Therefore, 
Wolterbeek and Verburg evaluated 80metal ions’ toxicity using 30 data sets from different literatures13. For each 
data set, the calculated toxicities were ordered numerically by relative numbering. After doing so for the 30 data sets, 
each selected metal ion could be given an averaged number. Toxicity order numbers (TON) increased with 
toxicities. 
 
In the current study, the TONs of twenty metal ions (Ag+, Ba2+, Ca2+,Cd2+,Co2+, Cr3+, Cs+, Cu2+, Fe3+, Hg2+, K+, La3+, 
Li +, Mg2+, Mn2+, Na+, Ni2+, Pb2+, Sr2+, Zn2+) were used for building the model and other seven (Al 3+, Bi3+, Fe2+, Rb+, 
Sb3+, Sc3+, Y3+) were used for model testing (shown in Table 1 and 2).The 15min -lgEC50 for photobacterium 
phosphoreum of nine metal ions(Cd2+, Co2+, Cr3+, Cu2+, K+, Mn2+, Ni2+, Sr2+, Zn2+) obtained were used for validating 
model. 
 
Data of Metal Ionic Properties 
We denoted metal ionic properties OX as the oxidation state; ∆E0 as the absolute difference in electrochemical 
potential between the ion and its first stable reduced state; IP as the ionization potential; Xm as the electronegativity; 
AR as the atomic radius; r as the Pauling ionic radius; AW as the atomic weight; AN as the atomic number; ∆IP as 
the difference in ionization potential between OX and OX-1; |logKOH| as the absolute value of the log of the first 
hydrolysis constant; σp as the softness index; Z* as the effective ionic charge; N as the ionic electron number for 
valence shell. In addition, there are several other metal ionic properties, which are some combination of the above. 
They are AR/AW, Xm

2r, AN/∆IP, Z2/r (Z=ionic charge), Z/r2, Z/AR2, Z/r, Z/AR and Z*2/r [12-13, 21-23]. 
 
Experimental Methods 
The stock solutions of the nine tested metal ions were freshly prepared by dissolving the following nitrates in 
deionized water: Cu(NO3)2·3H2O provided by Tianjin No. 3 Chemical Reagent Factory; Cd(NO3)2·4H2O provided 
by Shanghai Jinshan Tingxin Chemical Reagent Factory; Ni(NO3)2·6H2O provided by Beijing Yili Fine Chemical 
Co., Ltd.; Co(NO3)2·6H2O provided by Tianjin Bodi Chemical Co., Ltd.; KNO3 provided by Beijing Chemical 
Factory; Zn(NO3)2·6H2O, Cr(NO3)3·9H2O, Mn(NO3)2 and Sr(NO3)2 provided by Tianjin Guangfu Fine Chemical 
Research Institute. 
 
The toxicities of the nine metal ions were evaluated using the photobacterium phosphoreum in freeze-dried form 
(provided by Institute of Soil Science, Chinese Academy of Sciences), which was activated prior to testing by the 
reconstitution solution. Since the photobacterium phosphoreum is one of the marine organisms, the adjustment for 
the osmotic pressure of the samples was applied to obtain a 2% salinity using NaCl. The light emission of the 
photobacterium phosphoreum through direct contact with the samples was measured using Biological Toxicity 
TesterDXY-2 (provided by Institute of Soil Science, Chinese Academy of Sciences)within an exposure time of 
15minutes. The toxicities of the nine metal ions were measured using the National Standard Method of the People’s 
Republic of China GB/T 15441-1995 (Water quality-Determination of the acute toxicity-Luminescent bacteria test). 
 
Data Analysis 
Cluster analysis, correlation analysis, principal component analysis, multiple linear regression analysis and 
sensitivity analysis were applied in the current study. Cluster analysis was used to place the metal ionic properties 
with similar behavior into groups. Correlation analysis was used to select the metal ionic properties which have the 
highest correlation with TON, and will help reduce the data needed.
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Table 1Metal ionic property and TONs of twenty metal ions 

 
Metal ions OX ∆E0 IP Xm AR r AW AN AR/AW ∆IP |lgKOH| Xm

2r Z2/r AN/∆IP σp Z/r2 Z/AR2 Z/r Z/AR Z*  Z*2/r N TON 
Ag+ 1 0.80 7.58 1.93 1.52 1.15 107.87 47 0.0141 7.58 11.0 4.28 0.87 6.20 0.074 0.76 0.4328 0.87 0.6579 3.70 11.90 18 49.4 
Ba2+ 2 2.91 10.01 0.89 2.17 1.42 137.34 56 0.0158 4.80 13.4 1.12 2.82 11.67 0.183 0.99 0.4247 1.41 0.9217 3.20 7.21 8 32.6 
Ca2+ 2 2.87 11.88 1.00 1.91 1.00 40.08 20 0.0477 5.76 12.5 1.00 4.00 3.47 0.181 2.00 0.5482 2.00 1.0471 3.20 10.24 8 16.1 
Cd2+ 2 0.40 16.92 1.69 1.48 0.95 112.40 48 0.0132 7.92 9.7 2.71 4.21 6.06 0.081 2.22 0.9131 2.11 1.3514 4.70 23.25 18 52.0 
Co2+ 2 0.28 17.09 1.91 1.25 0.65 58.93 27 0.0212 9.21 9.8 2.37 6.15 2.93 0.130 4.73 1.2800 3.08 1.6000 4.25 27.79 15 39.0 
Cr3+ 3 0.41 30.97 1.66 1.25 0.62 52.00 24 0.0240 14.48 3.7 1.71 14.52 1.66 0.107 7.80 1.9200 4.84 2.4000 4.65 34.88 11 32.3 
Cs+ 1 3.03 3.90 0.79 2.62 1.74 132.91 55 0.0197 3.90 0.0 1.09 0.57 14.10 0.218 0.33 0.1457 0.57 0.3817 2.20 2.78 8 34.6 
Cu2+ 2 0.15 20.30 1.65 1.35 0.73 63.54 29 0.0212 12.57 8.0 1.99 5.48 2.31 0.104 3.75 1.0974 2.74 1.4815 4.55 28.36 17 40.0 

Fe3+ 3 0.77 30.66 1.83 1.24 0.55 55.85 26 0.0222 14.46 2.2 1.84 16.36 1.80 0.097 9.92 1.9511 5.45 2.4194 4.95 44.55 13 29.8 
Hg2+ 2 0.92 18.77 2.00 1.48 1.02 200.59 80 0.0074 8.33 3.7 4.08 3.92 9.60 0.065 1.92 0.9131 1.96 1.3514 4.70 21.66 18 62.1 
K+ 1 2.93 4.34 0.82 2.31 1.51 39.10 19 0.0591 4.34 16.0 1.02 0.66 4.38 0.232 0.44 0.1874 0.66 0.4329 2.20 3.21 8 19.7 

La3+ 3 2.38 19.19 1.10 1.87 1.16 138.91 57 0.0135 8.13 9.0 1.40 7.76 7.01 0.171 2.23 0.8579 2.59 1.6043 4.20 15.21 8 33.3 
Li + 1 3.05 5.39 0.98 1.52 0.76 6.94 3 0.2190 5.39 14.2 0.73 1.32 0.56 0.247 1.73 0.4328 1.32 0.6579 1.30 2.22 2 11.5 

Mg2+ 2 2.37 15.04 1.31 1.55 0.72 24.31 12 0.0638 7.39 11.4 1.24 5.56 1.62 0.167 3.86 0.8325 2.78 1.2903 3.20 14.22 8 14.7 
Mn2+ 2 1.19 15.65 1.55 1.12 0.67 54.94 25 0.0204 8.21 10.6 1.61 5.97 3.05 0.125 4.46 1.5944 2.99 1.7857 3.95 23.29 13 32.8 
Na+ 1 2.71 5.14 0.93 1.86 1.02 22.99 11 0.0809 5.14 14.8 0.88 0.98 2.14 0.211 0.96 0.2891 0.98 0.5376 2.20 4.75 8 15.9 
Ni2+ 2 0.26 18.18 1.90 1.25 0.69 58.71 28 0.0213 10.54 8.9 2.49 5.80 2.66 0.126 4.20 1.2800 2.90 1.6000 4.40 28.06 16 39.0 
Pb2+ 2 0.13 15.04 2.33 1.54 1.19 207.19 82 0.0074 7.62 8.8 6.46 3.36 10.76 0.131 1.41 0.8433 1.68 1.2987 6.00 30.25 20 65.3 
Sr2+ 2 2.90 11.04 0.95 2.07 1.26 87.62 38 0.0236 5.34 13.0 1.14 3.17 7.12 0.174 1.26 0.4668 1.59 0.9662 3.20 8.13 8 25.3 
Zn2+ 2 0.76 17.97 1.81 1.31 0.74 65.37 30 0.0200 8.57 9.0 2.42 5.41 3.50 0.115 3.65 1.1654 2.70 1.5267 4.70 29.85 18 35.6 

 
Table 2 Metal ionic properties and TONs of seven metal ions 

 
Metal ions AR/AW |lgKOH| σp ∆E0 Xm

2r AN Z*2/r N TON 
Al3+ 0.0515 5.0 0.136 1.66 1.40 13 32.67 8 15.1 
Bi3+ 0.0070 1.6 0.113 0.20 4.20 83 47.57 20 64.8 
Fe2+ 0.0222 8.3 0.129 0.45 2.04 26 27.56 14 36.4 
Rb+ 0.0284 0.0 0.229 2.98 1.08 37 3.01 8 28.8 
Sb3+ 0.0116 0.0 0.119 0.66 3.19 51 64.47 20 50.9 
Sc3+ 0.0360 5.1 0.140 2.08 1.39 21 23.52 8 18.3 
Y3+ 0.0200 8.3 0.147 2.37 1.52 39 17.29 8 25.5 
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Principal component analysis is an important multivariate statistical analysis method. Its goals are to extract the 
most important information from the data set, to compress the size of the data set by keeping only this important 
information, and to simplify the description of the data set. For achieving these goals, principal component analysis 
generates new variables called principal components(PCs) which are obtained by weighted linear combinations of 
the original variables [24].Then we apply multiple linear regression analysis, taking the PCs which account for the 
majority proportion of variance as independent variables and TON as the dependent variable, to estimate the impact 
of the metal ionic properties on TON. 
 
The application of sensitivity analysis is to judge the critical metal ionic property’s impact on TON. Sensitivity 
analysis is defined as “the study of how the uncertainty in the output of a model (numerical or otherwise) can be 
apportioned to different sources of uncertainty in the model input” [25].It is an indispensable part of optimization 
design. 
 

RESULTS AND DISCUSSION 
 

Cluster Analysis of Metal Ionic Properties 
We did a cluster analysis on all of the metal ionic properties in Table 3.They were artificially divided into 11 groups 
based on the dendrogram in Fig. 1. Table 3 also shows the results of the correlation analysis between the twenty two 
metal ionic properties and TON. Only one metal ionic property in each group was selected by the correlation 
maximum method, which is AR/AW, |lgKOH|, σp, AR, ∆E0, Xm

2r, AN, Z/r2, Z*2/r, N and OX. 
 
AR (sig.=0.221), Z/r2 (sig.=0.872) and OX (sig.=0.453), in the selected metal ionic properties mentioned above, did 
not reach the significant level (sig.<0.05), which means that they did not have significant correlation with TON. So, 
we discarded them in our following analysis. Finally, eight metal ionic properties, including AR/AW, |lgKOH|, σp,∆E0, 
Xm

2r, AN, Z*2/r and N, were selected. 

 
 

Fig. 1Dendrogram constructed by cluster analysis of the twenty two metal ionic properties 
 

Principal Component Analysis of Metal Ionic Properties 
Multicollinearity refers to the approximate linear relation among the variables, which means a variable can be 
linearly expressed by others. Strong multicollinearity among variables often decreases the accuracy of parameter 
estimation, enlarges model error and damages model stability [26]. Therefore, minimizing multicollinearity is 
essential before building a multiple linear regression model. In order to minimize the multicollinearity of the 
selected eight metal ionic properties, we did a principal component analysis. It shows in Table 4 that there is 
significant multicollinearity (sig. < 0.05) among the eight metal ionic properties through the correlation analysis. 
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Table 3Results of cluster analysis of the twenty two metal ionic properties and correlation analysis between the twenty two metal ionic 
properties and TON 

 

Metal ionic properties N 
Cluster analysis Correlation analysis 

Group R sig. (2-tailed) 
AR/AW 20 1 -0.631**  0.003 
|lgKOH| 20 2 -0.456* 0.043 
σp 20 3 -0.729**  ﹤0.001 
R 20 4 0.066 0.783 
AR 20 4 -0.287 0.221 
∆E0 20 5 -0.708**  ﹤0.001 
Xm

2r 20 6 0.870**  ﹤0.001 
AN/∆IP 20 7 0.512* 0.021 
AN 20 7 0.833**  ﹤0.001 
AW 20 7 0.820**  ﹤0.001 
Z/r2 20 8 -0.038 0.872 
Z2/r 20 8 0.024 0.921 
∆IP 20 9 0.271 0.248 
Z*2/r 20 9 0.469* 0.037 
Z/r 20 9 0.025 0.916 
Z/AR2 20 9 0.220 0.352 
Z/AR 20 9 0.230 0.329 
IP 20 9 0.289 0.216 
N 20 10 0.857**  ﹤0.001 
Z* 20 10 0.749**  ﹤0.001 
Xm 20 10 0.760**  ﹤0.001 
OX 20 11 0.178 0.453 

* Correlation is significant at the 0.05 level (2-tailed). 
** Correlation is significant at the 0.01 level (2-tailed). 

 
Table 4 Results of correlation analysis among the eight selected metal ionic properties 

 
  |lgKOH| σp ∆E0 Xm

2r AN Z*2/r N 

R 

AR/AW 0.445* 0.629**  0.482* -0.424 -0.606**  -0.464* -0.645**  
|lgKOH|  0.471* 0.428 -0.256 -0.407 -0.550* -0.353 
σp   0.860**  -0.629**  -0.388 -0.759**  -0.860**  
∆E0    -0.676**  -0.247 -0.863**  -0.886**  
Xm

2r     0.682**  0.442 0.816**  
AN      0.122 0.498* 
Z*2/r       0.670**  

sig. (2-tailed) 

AR/AW 0.049 0.003 0.032 0.062 0.005 0.039 0.002 
|lgKOH|  0.036 0.060 0.277 0.075 0.012 0.127 
σp   ＜0.001 0.003 0.091 ＜0.001 ＜0.001 
∆E0    0.001 0.294 ＜0.001 ＜0.001 
Xm

2r     0.001 0.051 ＜0.001 
AN      0.607 0.025 
Z*2/r       0.001 

N 

AR/AW 20 20 20 20 20 20 20 
|lgKOH|  20 20 20 20 20 20 
σp   20 20 20 20 20 
∆E0    20 20 20 20 
Xm

2r     20 20 20 
AN      20 20 
Z*2/r       20 

*Correlation is significant at the 0.05 level (2-tailed). 
** Correlation is significant at the 0.01 level (2-tailed). 

  
The eight metal ionic properties were transformed into eight components. PCs, with eigenvalue greater than or equal 
to 1,means they carry the majority of the information of the data, while the others with little information could be 
discarded [27].In the current study,PC1 and PC2have eigenvalues greater than 1(Fig. 2) and both these two PCs 
contain 77.40% of the information of the variances (Table 5). 
 
PCs obtained by weighted linear combinations of the original variables were as follows: 
 
PCs=as1stdx1+as2stdx2+…+asmstdxm     (1) 

 
Where stdxm refers to the transformed original variable, and asm is the principal component score coefficient (Table 
6) 
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Fig.2 Eigenvalue of PCs 

 
Table 5 Statistical information of PCs 

 

Principal component 
Extraction sums of squared loadings 

Total % of variance Cumulative % 
1 4.995 62.440 62.440 
2 1.197 14.961 77.401 
3 0.899 11.232 88.633 
4 0.513 6.412 95.045 
5 0.178 2.231 97.276 
6 0.126 1.570 98.846 
7 0.059 0.742 99.589 
8 0.033 0.411 100.000 

 
Table 6 PCs score coefficients matrix 

 

Metal ionic properties 
PCs 

1 2 
AR/AW 0.147 -0.249 
|lgKOH| 0.118 0.006 
σp 0.182 0.153 
∆E0 0.179 0.304 
Xm

2r -0.158 0.248 
AN -0.118 0.646 
Z*2/r -0.159 -0.423 
N -0.187 -0.009 

 
Multiple Linear Regression Analysis of PCs and TON 
The multiple linear regression analysis, taking PC1 and PC2as independent variables and TON as the dependent 
variable, was performed. Goodness-of-fit test (adj. R2=0.905, N=20) and F test (sig. <0.001), and the t-test (sig. < 
0.001) in Table 7 show the model is statistically reliable. The multiple linear regression model is described by model 
(2). Using Model (2) and the PCs score coefficients in Table 6; we could obtain the QICAR model (3): 
 
TON=-13.145PC1+5.647PC2+34.050   (2) 
 
TON=-70.675AR/AW-0.353|lgKOH|-28.312σp-0.537∆E0 
+ 2.436Xm

2r+ 0.240AN-0.024Z*2/r+0.475N + 26.033  (3) 
 
The metal ionic propertiesXm

2r,AN and N have positive coefficients and play positive roles in the model, while the 
metal ionic properties AR/AW, |lgKOH|, σp, ∆E0and Z*2/r have negative coefficients andnegatively influence the 
model. 

 
Table 7t-test to PC1 and PC2 

 

Model 
Unstandardized coefficients Standardized coefficients 

t sig. 
B Std. error Beta 

(constant) 34.050 1.032  33.002 ﹤0.001 
PC1 -13.145 1.059 -0.879 -12.417 ﹤0.001 
PC2 5.647 1.059 0.378 5.335 ﹤0.001 
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Comparison of Simulated Values with Observed Values 
The Nash-Suttcliffe simulation efficiency coefficient (NSC) was selected to evaluate the accuracy of the QICAR 
model. NSC is the fraction of the variance in the observation explained by the model; a higher value indicates a 
more accurate model [28]. The formula for NSC is given as follows: 
 

2

=1

2

=1

-
NSC = 1-

-

n

exp pre
i
n

expexp
i

P P

P P

∑

∑

（ ）

（ ）

  (4) 

Where Ppre refers to the simulated value, Pexp is the observed value, expP  is the mean observed value. 

 
In the current study, the twenty metal ions (Table 1) were used in building the QICAR model, and the other seven 
metal ions (Table 2) were used in testing the accuracy of the model. From Formula (4), the NSC for model building 
and model testing are 0.91 and 0.85 respectively. This means that the QICAR model can be well applied to predict 
the TON of the metal ions. 
 
Comparison of Simulated Values with Experiment Data 
The 15min EC50 for photobacterium phosphoreum of nine metal ions were obtained through experiment and 
normalization processing was carried out (Table 8).Correlation analysis between normalized EC50 and the 
corresponding simulated TON was performed. Table 9showsa highly significant correlation between them (sig. = 
0.002).All the studies indicated that the TONs of the metal ions can be calculated by the QICAR model and 
correlated with other forms of toxicity data. 
 

Table8Normalized EC50 and the corresponding simulated TONs of nine metal ions 
 

Metal ions Normalized EC50 Simulated TON 
Cd2+ 0.100006 45.3 
Co2+ 0.100223 36.0 
Cr3+ 0.100385 34.1 
Cu2+ 0.100036 37.9 
K+ 0.900000 18.8 

Mn2+ 0.107343 32.2 
Ni2+ 0.100000 37.4 
Sr2+ 0.474140 28.8 
Zn2+ 0.100004 38.7 

 
Table 9 Correlation analysis between normalized EC50 and the corresponding simulated TON 

 
 N R sig. (2-tailed) 

normalized EC50 9 -0.876**  0.002 

 
Sensitivity analysis 
At first, taking Pb2+ as an example, sensitivity analysis of the eight metal ionic properties in the QICAR 
model was carried out to show which metal ionic properties have more impact on TON. 
 
Keeping the other seven metal ionic properties constant, TON was recalculated when a metal ionic property 
changed by -20%, -10%, 10% and 20%. A sensitivity coefficient is basically the ratio of the change in output over 
the change in input [29].Table 10 shows the sensitivity coefficients of the eight metal ionic properties in the QICAR 
model. From the table, sensitivity analysis chart was drawn by taking the variable proportion as ordinate and the 
recalculated TON as abscissa (Fig.3).On the basis of the figure, it is evident that AN has the largest sensitivity 
coefficient and is the most critical factor affecting TON, and the impact degree of the other seven metal ionic 
properties on TON are Xm

2r, N, σp, |lgKOH|, Z*2/r, AR/AW and ∆E0. 
 
Then sensitivity coefficients of the remaining nineteen metal ions were obtained in the same way (Table 11).From 
the table, the impact degree of the eight metal ionic properties on TON is different for each metal ion. For a lot of 
metal ions (Ag+, Ba2+, Cd2+, Cr3+, Cs+, Fe3+, Hg2+, La3+ andSr2+),AN is still the most critical factor affecting TON. 
But for Co2+, Cu2+, Mn2+, Ni2+ and Zn2+, N is the most critical factor; for Ca2+, K+, Mg2+ and Na+,σpis the most 
critical factor; for Li+, AR/AW is the most critical factor. About the strong impact of AN and AR/AW on TON, Li et al. 
has the similar finding[30]. σp separates metal ions into three groups: soft metal ions (for example, Ag, Cd and Hg), 
which prefer to bind to sulfur; hard metal ions (for example, Ba, Ca and Na), which prefer to bind to oxygen or 
nitrogen; borderline metal ions (for example, Co, Ni and Zn) [31]. And the soft metal ions are more toxic than the 
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hard metal ions because of the relative importance of metal ion binding to sulfur on biomolecules [12]. Zhang 
reported, in his study on the relationship between cation’ structure and H2S system analysis, the difference of 
polarization force in different cations depends largely on N [22]. And this may be the reason for the change of metal 
ion toxicity. 
 

Table 10 Sensitivity coefficients of the eight metal ionic properties in the QICAR model for Pb2+ 

 
Metal ionic properties Variable proportion (%) Recalculated TON Sensitivity coefficient 

AR/AW 

-20 62.92 

-0.525 
-10 62.87 
+10 62.76 
+20 62.71 

|lgKOH| 

-20 63.44 

-3.125 
-10 63.13 
+10 62.50 
+20 62.19 

σp 

-20 63.56 

-3.725 
-10 63.19 
+10 62.44 
+20 62.07 

∆E0 

-20 62.83 

-0.075 
-10 62.82 
+10 62.81 
+20 62.80 

Xm
2r 

-20 59.67 

15.725 
-10 61.24 
+10 64.39 
+20 65.96 

AN 

-20 58.88 

19.675 
-10 60.85 
+10 64.78 
+20 66.75 

Z*2/r 

-20 62.96 

-0.725 
-10 62.89 
+10 62.74 
+20 62.67 

N 

-20 60.92 

9.500 
-10 61.87 
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Fig.3 Sensitivity analysis chart for Pb2+ 
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Table 11Sensitivity coefficients of the eight metal ionic properties in the QICAR model for the remaining nineteen metal ions 
 

metal ion properties Ag+ Ba2+ Ca2+ Cd2+ Co2+ Cr3+ Cs+ Cu2+ Fe3+ Hg2+ 
AR/AW -0.997 -1.117 -3.371 -0.933 -1.498 -1.696 -1.392 -1.498 -1.569 -0.523 
|lgKOH| -3.883 -4.730 -4.413 -3.424 -3.459 -1.306 0.000 -2.824 -0.777 -1.306 
σp -2.095 -5.181 -5.124 -2.293 -3.681 -3.029 -6.172 -2.944 -2.746 -1.840 
∆E0 -0.430 -1.563 -1.541 -0.215 -0.150 -0.220 -1.627 -0.081 -0.413 -0.494 
Xm

2r 10.426 2.728 2.436 6.602 5.773 4.166 2.655 4.848 4.482 9.939 
AN 11.280 13.440 4.800 11.520 6.480 5.760 13.200 6.960 6.240 19.200 
Z*2/r -0.286 -0.173 -0.246 -0.558 -0.667 -0.837 -0.067 -0.681 -1.069 -0.520 
N 8.550 3.800 3.800 8.550 7.125 5.225 3.800 8.075 6.175 8.550 
metal ion properties K+ La3+ Li+ Mg2+ Mn2+ Na+ Ni2+ Sr2+ Zn2+ 

 
AR/AW -4.177 -0.954 -15.478 -4.509 -1.442 -5.718 -1.505 -1.668 -1.414 

 
|lgKOH| -5.648 -3.177 -5.013 -4.024 -3.742 -5.224 -3.142 -4.589 -3.177 

 
σp -6.568 -4.841 -6.993 -4.728 -3.539 -5.974 -3.567 -4.926 -3.256 

 
∆E0 -1.573 -1.278 -1.638 -1.273 -0.639 -1.455 -0.140 -1.557 -0.408 

 
Xm

2r 2.485 3.410 1.778 3.021 3.922 2.144 6.066 2.777 5.895 
 

AN 4.560 13.680 0.720 2.880 6.000 2.640 6.720 9.120 7.200 
 

Z*2/r -0.077 -0.365 -0.053 -0.341 -0.559 -0.114 -0.673 -0.195 -0.716 
 

N 3.800 3.800 0.950 3.800 6.175 3.800 7.600 3.800 8.550  
 

CONCLUSION 
 

Based on the whole analysis of the study, the following conclusions can be formed: 
(1)The 22 metal ionic properties can be artificially divided into eleven groups by their ionic behavior: AR/AW; 
|lgKOH|; σp;r, AR; ∆E0;Xm

2r;AN/∆IP, AN, AW;Z/r2, Z2/r; ∆IP, Z*2/r, Z/r, Z/AR2, Z/AR, IP;N, Z*,Xm; OX. 
(2) The QICAR model can be used to predict the TON of other unknown metal ions. 
(3) The metal ionic propertiesXm

2r,AN and N play positive roles in the QICAR model, while the metal ionic 
properties AR/AW, |lgKOH|, σp, ∆E0 and Z*2/r have a negative influence on the QICAR model. 
(4) The impact degree of the metal ionic properties in the QICAR model on TON is different for each metal ion. For 
Pb2+, Ag+, Ba2+, Cd2+, Cr3+, Cs+, Fe3+, Hg2+, La3+ and Sr2+, AN is the most critical factor affecting TON; for Co2+, 
Cu2+, Mn2+, Ni2+ and Zn2+, N is the most critical factor; for Ca2+, K+, Mg2+ and Na+, σp is the most critical factor; for 
Li +, AR/AW is the most critical factor. 
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