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ABSTRACT

In this paper, we use the least squares estimation and principal component analysis to analyze the performance
impact of manganese and chromium to hot-rolled ribbed steel bars, eliminate collinearity and establish the linear
regression equation of manganese and chromium with steel yield strength. In the fitting result, the proportion of
carbon and manganese is consistent with practical experience, and the correlation of sulfur and the yield strength is
still a problem. The fitting result can provide a reference for analyzing the performance of hot-rolled ribbed steel
bars. However the nonlinear relationship of manganese and chromium with hot-rolled ribbed steel bars has not
been resolved, we need to further analyze.
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INTRODUCTION

HRB400 hot-rolled ribbed steel bars are widely used in civil construction, bridges, special equipment, chemicals and
other areas. Rebar mechanical properties are the basic parameters in much structural safety evaluation. As we all
know, there is a objectively certain relationship in the mechanical property indexes of steel, process factors of
chemical composition, test conditions and test results[1,2]. For example, the higher of carbon and manganese
content in chemical composition, the higher the tensile strength of the steel and the lower the elongation. The
relationship between these variables can not be expressed by a determined function, that is to say the one to one
relationship does not exist between them, and however, there is a certain correlation. Under some conditions of
confidence, the relationship between the variables can also be expressed as a function[3]. Regression analysis is a
statistical analysis method to deal with the correlation among variables. As a relatively old method, in the eighteenth
century, least squares estimation was first founded by Gauss and successfully applied in astronomical observations
and geodetic work. Least squares regression analysis is the more commonly used calculation Method. It is used to
solve the problem that how to find a reliable value from a set of measured values. The basic principle is[4,5,6] to
find a best fit curve from the measured data which can make sure that the quadratic sum of difference between the
measured value and the fitted value at each point on the curve is minimum. The OLSE has been very widely used in
many fields such as parameter estimation, system identification and prediction, forecasting, etc.[7,8]

Principal components analysis is an analyzing and simplifying data collection technique. In 1901, it was invented by
Karl Pearson for analyzing the data and building mathematical models. The dimensionality reduction method
provides a strong theoretical and technical support in the comprehensive evaluation. PCA can transform the problem
of high-dimensional space into low-dimensional space. And with the principal component analysis process, it will
automatically calculate the weights of each main component which can largely resisted the interference of human
factors in the evaluation process [9], therefore, comprehensive evaluation theory based on principal component can
be batter to ensure the objectivity of the evaluation results and objectively reflect the real problems
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This structure of paper: The first part introduces the principle of least squares and fitting test methods. The second
part introduces multicollinearity and principal component analysis. The third part introduces how to estimate the
linear regression equation among manganese, chromium and yield strength of hot-rolled ribbed steel in using OLSE

2 The model of Least squares estimation
2.1 theory of Least squares estimation
There totally has p elements pxxx ,,, 21  , supposing that they have the following linear relationship with

y that,   ppxxy 110 , y is a observable random variable, p ,,, 21  are unknown

parameters,  is an unobservable random error which meets 0E , 2)(  Var , 2 is unknown. In general,

we call it multivariate linear regression model, denoted
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),,2,1( nii  reflects the contribution regression factor ),,2,1( nixi  make to observations y .So it is
usually referred i as the effect of factors ix

Now we use matrix to discuss the solution of issues. This method has many advantages, the more important point is
the solution can be used for any regression problems once the problem is given in matrix form and obtain a matrix
form solution. No matter how many terms in the regression equation, all the related formulas are in the same forms.
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. And the matrix form of multiple linear regression, this condition

can be expressed as ),0(~ 2
nIN  . With the above assumptions and nature of the multivariate normal

distribution, random vector y can be consider as an expectation vector which obey the 5-dimensional normal
regression model. As we know XYE )( , nIyVar 2)(  ,so we can get ),(~ 2

nIXNy  . We use the least

squares estimator to find the estimated value ̂ of  .And ̂ meets the equation )(min)ˆ( 

QQ  .Then

calculate the partial derivative and make it zero, we can get the equation
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)(  ),,1,0( pk  .Write in matrix

form, replace  with ̂ ,then we can get the normal equation YXXX   . Solve the normal equations and get the

solution of the equation YXXX  1)(̂ ,the one ̂ is the least squares estimation of  .For other non-linear
distribution function such as exponential functions, logarithmic functions can be transformed into a linear problem
and solved.
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2.2 Regression testing
Then we introduce three different test methods

1) F-Test (the regression equation test)
Set the overall regression coefficient is ),,2,1( pjj  , then null hypothesis 0H and alternative

hypothesis 1H of F-test can be written as

0H : 0 , scilicet 021  p  ;

1H : 0 , scilicet there is at least one component of  is not zero ),,2,1(0 pjj 

Make the two sides of the equation )ˆ()ˆ( yyyyyy iiii  squared, then we can get
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2) T-Test(the coefficient test regression)
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This suggests that, when the SST fixed, the more r is close to 1, the less the SSE. Specially, when r is equal to 1,
then SSE is equal to 0and SSR is equal to SST. That is to say the change of y is caused by the linear relationship
of y and x . So statistics r can be used to weigh the close degree of the linear correlation of y and x .This test
method is called the r-test.

Generally, the hypothesis test of regression equation includes two aspects: one is the regression model test which
can test if there is a linear model can show the relationship of the independent variable and dependent variable. This
is done by f-test; another test is about the regression parameters test the t-test. When the model is through the
inspection, we need the specific inspection to test the influence of each independent variable on the dependent
variable.

3 Principal component analysis
3.1 The multicollinearity
The original meaning of multicollinearity is some of the independent variables is linear related in linear regression
model. Now the multicollinearity contains two cases the completely linear and approximate linear. That is to say
some independent variables in linear regression model have a completely or approximate linear relationship.
Generally multicollinearity elimination methods are principal component analysis, partial least squares, ridge
regression, etc.

1)The dangers of multicollinearity
(1)In the condition of completely multicollinearity parameter estimators may not exist. (2)In the condition of
approximate multicollinearity the OLS estimators are not effective and the parameter estimation is unstable. (3)It
can't correctly reflect the influence of each explanatory variable to the explained variable which may cause the
actual meaning of the parameter estimator is not reasonable.

2) The causes of multicollinearity
(1) The limitation of sample data and the number of sample data is not enough. (2) In the model, the setting of
explain variables is error and there has internal relationship between the variables. (3) Variables have common trend

3) Methods for identifying multicollinearity
Multicollinearity shows there have the relevant relationship between variables, so the main test method for
identifying multicollinearity are statistical methods.

(1) Variance inflation factor method (VIF)

define   121 
 jj RVIF , 2

jR is the multiple determination coefficient of jX .Generally speaking, if the biggest

jVIF is larger than 10,then there may exist multicollinearity. The fact show that if   101 12 


jj RVIF , then

1.01 2  jR , 9.02 jR .

(2) Characteristic root decision method
According to the nature of the matrix determinant, the value of matrix determinant is equal to it’s the product of

characteristic root. When 0' XX , at least there is one characteristic root is zero, there must exist

multicollinearity in column vectors. According to the condition number
i

m
iK 


 , m is the biggest characteristic

root, i is the others. It is commonly believed if 100  k , there is no multicollinearity, or if 10k there has
multicollinearity.

3.2 Principal component analysis
Principal component analysis is a method of dimension reduction. It has the characteristics which can keep the
largest contribution to the variance. Through linear transformation, it can combine the original multiple indicators
into a few indicators which can fully reflect the overall information. On the premise of not losing important
information, it can avoid problem of multicollinearity and do further analysis.

Specific steps of principal component regression:
(1) Do standardized processing to the original sample data and get the correlation coefficient matrix R of
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explanatory variables.
(2)Calculate the eigenvalues of the R , k  21 and the standardization feature vector kuuu ,,, 21  .
(3) Use eigenvalue to test multicollinearity. At least there is one characteristic root is zero, there has multicollinearity.
Then set kmm  ,,, 21  approximate to zero, this shows that there have mk  linear correlation among the
variables.
(4) Setting the multiple linear model is  KK XbXbXbbY 22110 and we can get K principal

components of the explanatory standardized variables kX,,X,X 21 
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4 The example analysis
In the construction industry, the HRB400 hot rolled ribbed steel bars instead of HRB335 hot rolled ribbed steel bar
is widely used. It not only can improve the seismic resistance of buildings but also reduce the usage of steels. As we
all know, there is a certain relationship between the steel composition and performance, such as the higher content of
carbon and manganese is, the higher tensile strength and the lower elongation of steels. Reflected in the math, this
relationship is the interrelation among the variables. But now the effect of chromium and manganese element to the
performance of hot rolled ribbed steel bar is still not clear. It needs to do further research such as statistical analysis,
function fitting and ingredient optimization research. The following is data fitting with SPSS software.

Table 1 Anova b

Model Sum of Squares df Mean Square F Sig.
Regression 75004.483 11 6818.589 46.514 .000a
Residual 462209.230 3153 146.593
Total 537213.712 3164

a. Predictors: (Constant), ALT, MN, MO, P, S, C, V, CU, Si, Cr, Ni
b. Dependent Variable: Yield strength

Table 2 Coefficients

Model Unstandardized Coefficients Standardized Coefficients t Sig. Collinearity StatisticsB Std. Error Beta Tolerance VIF
(Constant) 370.351 8.197 45.184 .000

C 91.206 20.178 .078 4.520 .000 .917 1.091
MN 15.789 6.233 .049 2.533 .011 .715 1.398
S 260.819 58.696 .076 4.444 .000 .938 1.066
P -255.107 49.464 -.094 -5.157 .000 .814 1.228
Si -9.286 9.005 -.019 -1.031 .303 .764 1.308
Cr 146.245 32.450 .135 4.507 .000 .306 3.267
V 1079.564 74.698 .263 14.452 .000 .827 1.210
Ni -105.392 64.801 -.051 -1.626 .104 .277 3.612
CU 476.754 86.254 .106 5.527 .000 .743 1.346
MO -95.940 180.933 -.009 -.530 .596 .862 1.160
AL 5.290 21.281 .004 .249 .804 .994 1.006

a. Dependent Variable：Yield strength

Table 2 has given the regression coefficient of the linear regression model and some corresponding statistics. From
this table ,we can get constant and coefficient of various elements about the linear regression model. In addition, we
can get t value of the constant and coefficient of the linear regression model from Table 2. We can get the fitting
result
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5029ALT+95.940Mo-476.754Cu+105.392Ni-146.245Cr+1079.564V
+9.286Si-255.107P-260.819S+15.789Mn+91.206C+370.351=Y

Table 3 Collinearity Diagnostics

Dimension 1 2 3 4 5 6
Eigenvalue 10.974 0.548 0.233 0.141 0.035 0.023
Condition Index 1 4.473 6.867 8.815 17.829 21.724
Dimension 7 8 9 10 11 12
Eigenvalue 0.019 0.015 0.007 0.003 0.001 0
Condition Index 23.911 26.653 40.737 65.829 95.258 170.847

Table 1 is the variance analysis result of the regression equation, by the F test 514.46F , Significance
level 001.0 , 3)1113174,11()1,( 001.0  FpnpF ,we can get

3)1,(514.46  pnpFF  , so the overall regression model is through f test. By the t

test, 291.3)3162()1( 0005.0
2

 tpnt , most of the elements can be through the regression test. From

colinearity test results of Table 1 and Table 2, we can see in the variance expansion factors of the corresponding
parameters estimator are small, but by the eigenvalues and condition index, some characteristics roots tend to zero
and there is significant collinearity. And by the condition number in the table, there has significant collinearity. We
nee to further study and to eliminate collinearity.

Table 4 Total Variance Explained

Component Initial Eigenvalues Extraction Sums of Squared Loadings
Total % of Variance Cumulative % Total % of Variance Cumulative %

1 2.547 23.152 23.152 2.547 23.152 23.152
2 1.656 15.051 38.203 1.656 15.051 38.203
3 1.179 10.718 48.922 1.179 10.718 48.922
4 1.021 9.281 58.203 1.021 9.281 58.203
5 .959 8.719 66.922 .959 8.719 66.922
6 .849 7.718 74.640 .849 7.718 74.640
7 .807 7.340 81.980 .807 7.340 81.980
8 .746 6.784 88.764 .746 6.784 88.764
9 .605 5.504 94.268
10 .472 4.288 98.556
11 .159 1.444 100.000

Extraction Method: Principal Component Analysis.

By the principle of the cumulative contribution rate can not be less than %85 , In this paper, we get eight principal
component. First of all we can get linear regression of the principal components 821 ,, FFF  and the yield
strength.

8

7654321

977.1
132.1366.1195.0343.0533.058.1547.385.453

F
FFFFFFFY




Then do linear fitting of each principal components 821 ,, FFF  and chemical elements. Then we can get the
fitting results

372.15 98.68 14.09 298.72 210.56 1.32 969.98 55.55
183.56 256.15 363.73 76877
Y C Mn S P Si V Cr

Ni Cu Mo Al
       

   

Because we have selected the large number of principal components, the results after eliminating collinearity and
initial results have no obvious difference.

CONCLUSION

In the regression analysis, the least square method is a widely used regression methods. After fitting regression
equation, the collinearity inspection is necessary. If there exist the multicollinearity, we can use principal component
analysis, partial least squares, ridge regression and other methods to eliminate collinearity. In this paper, we use the
least square method and principal component analysis to build the linear regression equation of chromium
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manganese element and rebar yield strength. The results are in conformity with practical experience.
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