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ABSTRACT 
 
This paper studied the fractional calculus, given three types of numerical methods of solving fractional differential 
equations, that is the Fractional Euler method, The Fractional Backward differential method(BDF method) and the 
Fractional Order Reduced Backward differential method(FORBDF method). The numerical results show that these 
methods are effective, and we discussed the application of the fractional calculus to the viscoelastic material 
problem. Finally, the paper made a summary of the major work and prospected for future work. 
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INTRODUCTION 
 

The development history of researches on fractional calculus and its theory is almost as old as the integer-order 
calculus. The concept of fractional calculus first appeared in Leibniz’s diary in the September 30, 1695, he discussed 
the 0.5-order calculus and the significance of fractional derivatives, in which marks the theory sprout. However only 
after 124 years later that is in 1819 LA Croix first put forward a result of the simplest fractional 

derivative:
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Over the next few centuries, N. H. Abel [1], J. Liouville [2], B. Riemann, A. K. Grunwald, A. V. Letnikov, H. Weyl 
[3], A. Marehaud, H. T. Davis, A. Erdelyi, M. Resz, C. Fox and many other scientists  conducted in-depth research  
for fractional calculus , and made important contributions to the development of fractional calculus. The fractional 
calculus theory increasingly perfect in Euclidean measure, But mainly as a pure theoretical field of mathematics 
useful only for mathematicians, Because of lacking for boost of actual application background, the theory of 
fractional calculus developed very slowly [4-7].  
 
In recent decades, the fractional calculus theory has been widely used in various fields, it contains memories of 
various materials, mechanics and the describe of electrical characterization, the describe of the rheological 
properties of rocks, seismic analysis, Viscoelastic dampers, electricity fractal network, fractional sinusoidal 
oscillator, robot, electronic circuit, electrolysis chemical, fraction capacitor theory, electrode electrolyte interface 
description, fractal theory , the design of fractional order PID controller, Viscoelastic system, vibration control of 
flexible structural objects, fractional biological neurons and probability theory and so on, it also can be used to 
describe the physical and genetic and memory, mathematical model of breeding species, some of the soft tissue and 
the pulse of the human heart model and so on . Using fractional derivative [8] have a stronger advantage than integer 
order derivatives for much conductivity simulate and the substances structure, fractional derivative is equally 
important for the process simulation of semi-automatic dynamical system and the simulation of permeability 
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structure, all this have aroused great concern of scholars at home and abroad. 
 
In July, 1974, B. Ross organized the first fractional differential operators meeting in New Haven University, and 
edited session record. In 1965, K. B. Oldhamand J. Spanier [9] studied the fractional differential operator and 
published the first monograph in 1974, that is the fractional calculus, and there is also a thematic journal that is the 
journal of rational calculus, then also appeared the monograph on fractional differential operator, for example, Me 
Bride(1979), Samko, Kilbas and Mariellev (1987-1993), Nishimoto(1991), Miller Ross(1993),Rubin(1996), 
kiryanova(1994) and Podlub (1999). Some treatise studied the applications in mathematics in physics of fractional 
differential theory, for example, Davis, shilov, Dzherbashian, Caputo, Babenko, Gorenflo and so on . 
 
The numerical methods for fractional differential equations [6] have been heated discussion in domestic and foreign 
recently, including time and space fractional derivative, single and multi-fractional derivative [7-8], fractional 
ordinary differential equations and fractional partial differential equations. In 1986, Lubich first extended the BDF 
method to the numerical calculation of fractional integration and differentiation, and received a fractional 
approximation scheme of the BDF. In 1997, K. Diethie constructed a numerical method based on integral equation 
for the fractional differential equation of linear problem, and accessed its local and global error. In the same year, 
K.DiethalmandG.Walzln8 proposed the extrapolation method to solve fractional differential equations in order to 
improve the accuracy of numerical methods. 2001, N. J. Ford and C. Simpson analyzed the fixed storage guidelines 
to the nonlinear fractional differential and proposed nested grid programs to achieve variable step calculations 
method in order to obtain a better solution reasonable approximation. From 2002 to 2005, K. Diethelm proposed the 
fractional Admas method, the fractional estimate correction method, and gives the error analysis and the program for 
numerical methods. In 2003, Cuesta solves differential equations of fractional integral fractional Trapezoidal 
formula in Banach space. In China, Lin Ran and Liu Fawang studied the method of solving linear ordinary 
differential equations using BDF method and proved its compatibility, convergence and stability. Liu fawang 
construct the corresponding numerical methods for several different types of fractional differential equations[9-12] 
For example, the fractional relaxation equations, the fractional Bagley-Torvik equation, the fractional relaxation 
-Osciliation equation, the time fractional diffusion-reaction equations and control system of fractional differential 
equations, and gives its numerical methods convergence and stability analysis using fractional dispersion coefficient 
characteristics. Cao Xuenian and K.Burrag put forward the idea of nesting methods, which obtain effective 
adjustable step size implementation and conducted numerical stability analysis and obtain stability region. 
 
About the research of the fractional differential equations and numerical methods, F. Mainardi and R. Gorenflo 
developed the fractional calculation model, and obtained fractional basic solution of partial differential equations 
through Laplace transform, Fourier transform, Mellin transform. Mark Meerschaert studied the numerical methods 
of fractional-order partial differential equations, including linear method, finite difference method (explicit, implicit, 
extrapolation and so on), the finite element method and the infinite element method, etc. Sanz -Serna, Chen 
Chuansen, Thomee, Wahlbin, Huang Yunqing, XU large Liufa Wang and others made a good job in this field, they 
get the new numerical methods and techniques and theoretical analysis solution of partial differential equations. 
 
DEFINITION OF FRACTIONAL CALCULUS 
The definition of fractional derivative have many forms, and the ordinary defined is Riemann Liouville− , 
Gruwald Letnikov−  and Caputo [13].  
 
Definition 1  The Gruwald Letnikov−  fractional derivative： 
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where ( )zΓ
is the Gamma function, and the form is defined as： 
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Definition 2  The Riemann Liouville−  fractional derivative： 
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where ( )zΓ
is Gamma  function, and the form is defined as： 
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Definition 3 The Caputo  fractional derivative[14]： 
 

( ) ( )

( ) ( )
( )

( )

10

1 , 0 1 ,

, .

n
t

n
C
O t

n

n

y
d n n

n tD y t
d f t if n N
dt

α
α

t
t α

α t

α

+ −


≤ − < <

Γ − −= 


= ∈

∫

                                  (4) 
 

it satisfies 
( )

( ) ( )
( )

( )10

1lim .
n nt

n nn

y dd f t
n dtt αα

t
t

α t + −→
=

Γ − −∫
 

 
The three definition of fractional have the following relationships： 
 

(1) If ( )y t is continuously differentiable of order 1n −  during, and interblend then for any 
0 ,n Riemann Liouvillea< < −  fractional derivative and Gruwald Letnikov−  fractional derivative is 

equivalent, and if 0 1 ,m m nα≤ − ≤ < ≤ then 0 t T< <  have the following relationship: 
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(2)The relationship of Riemann Liouville−  fractional derivative and Caputo  fractional derivative is： 
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Among them, 1n nα− < < . 
 
The mathematical model is different of the fractional differential equations as the different background of the issue; 
the research about fractional ordinary differential equations numerical methods, the currently studied fractional 
differential equations is the follow one: 
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When 1n nα− ≤ < , the D yα
is the Riemann Liouville− rational derivative for y or Caputo rational 

derivative. 
 
THE NUMERICAL METHODS 
Considering the following initial value problem of fractional differential equation: 
 

1

0 0

( ) ( ( )) ( ( ))0
(0) m

y t D f y t g y t t
y y y R

α−′ = + < ≤ Τ


∈                                                      (8) 
 

Where 
11, D fαα −< ≤0  is the Riemann-Liouville fractional derivative of f , the form is defined as follow: 
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Where αΓ（） is Gamma function, which is defined as follow:

1te t dtαα
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Solving the first equations of the above-mentioned, we give several numerical methods solve fractional differential 
equations; they are fractional Euler method, the fractional backward differential equation and the reduced order of 
fractional backward differential equation. 
 
The Euler method: The Euler method is the easiest numerical method to solve fractional ordinary differential 
equations, the basic format is: 
  

1
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+ = + +                                                           (10) 

 
We need the numerical approximation scheme of the fractional derivative in order to achieve the above numerical 
method, here we use modified form which proposed by Diethelm, this leads to the following approximation: 
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Generally speaking, the approximation order of formula (4) is
1( ).O h α+

 
 
Fractional Backward differential Formula: The numerical value of Fractional Backward differential Formula is: 
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Where jα
 are the confidents of k -order BDF method, as shows in Table 1.  

 
Table 1: the confidents of BDF method 

 

k  0α  1α  2α  3α  4α  5α  6α  
1 -1 1      
2 1 -2 3/2     
3 -1/3 3/2 -3 11/6    
4 1/4 -4/3 3 -4 25/12   
5 -1/5 5/4 -10/3 5 -5 137/6  
6 1/6 -6/5 15/4 -20/3 15/2 -6 147/60 

 
The numerical approximation of fractional derivative is: 
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Where h  is the size of integration step, the confident 
1 ( 0,1, 2, , )jw j n kα− = +2

determined by the coefficients 
of the Taylor expansion that α1- th power of generating function of corresponding to 1-6-order BDF method:  
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The coefficient 
(1 ) ( 0,1, 2, , )jw j n kα− = +2

can be obtained by means of the coefficients of Taylor expansion of 
the following complex function: 
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Where k the number of step is, i is the imaginary unit. The correction coefficient: 
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Where Re( 1) Re( )s p sβ β+ − ≤ < + , p  is the number of order, β  makes 
1( )y x x β−

 sufficiently 

differentiable, Assumed ( )y x  sufficiently differentiable, so we make β = 1 , therefore, we can be obtained 
s p= from the above inequality that is coupled the correction term of the S-point. 
 
The Fractional Order Reduced Backward differential Formula: The reduced order BDF method of ordinary 
differential equation is proposed by Li Showoff and Su Kai. Numerical stability of this method has been 
significantly improved compared to BDF method, this method overall performance is better than the same order 
BDF method except its error coefficient is slightly larger and need to store additional function value. Therefore, this 
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method learning the structure idea of fractional BDF, we constructed FORBDF method. Its numerical format is as 
follow: 

( ) ( )( )1

0

k

j n j n k n k
j

y h D f y hg yαα β −
+ + +

=

= +∑
                                                  (17) 

Where ( )0, ,j j kα = 
and kβ  is the confident of k  order FORBDF, they are given in Table 2 and Table 3 

and Table 4 and Table 5. 
 

Table 2: the confident of FORBDF ( 4k = ) 
 

0α = −0.087500000000000  α1 =0.15227272727272  2α = 0.36477272727272  

3α = −1.4295454545454555  4 1α =
 4β =0.59318181818181888  

 
Table 3: the confident of FORBDF ( 5k = ) 

 

α0 =0.07059999999558
 

- 4α1 = 0.2 52799993220  2α = 0.02081599760088  

3α = 0.83566400030758888  4 -α = 1.7025520001352666  5 1α =
 

5β = 0.51388799997221    

 
Table 4: the confident of FORBDF ( 6k = ) 

 
α0 =-0.056809999999245555  α1 =0.24829270093482  2α = -0.27360438043751  

3α = -0.40658831968539777  4α = 1.4620324805346222  5α = −1.9733224813480  

6 1α =
 6β = -0.46283649640463   

 
Table 5: the confident of FORBDF ( 7k = ) 

 
α0 =0.048999999999978  -α1 = 0.27163945502525  2α = 0.51520407750740  

3α = -0.10938774600231  4 -α = 1.1394217791112  5α = 2.1822244961731  

6 -α = 2.2259795935460  7 1α =
 7β = 0.42816326514503  

 

Here, the approximation of fractional derivative is the same as above. The confident 
1 ( 0,1, 2, , )jw j n kα− = +2  

determined by the following the coefficients of the Taylor expansion that α1- th power of generating 

function ( )v x
, the generating function of 4 to 7 as follows: 

 
( ) ( ) ( )( )11 2 3 4

4 3 2 1 0 41 /v x x x x x
αα α α α α β
−− = + + + +

 
( ) ( ) ( )( )11 2 3 4 5

5 4 3 2 1 0 51 /v x x x x x x
αα α α α α α β
−− = + + + + +

 
( ) ( ) ( )( )11 2 3 4 5 6

6 5 4 3 2 1 0 61 /v x x x x x x x
αα α α α α α α β
−− = + + + + + +

( ) ( ) ( )( )11 2 3 4 5 6 7
7 6 5 4 3 3 2 0 71 /v x x x x x x x x

αα α α α α α α α β
−− = + + + + + + +

 
 

The coefficients 
( ) ( )1 0,1, 2, ,j j n kαω − = +2

can obtained by Fourier transform is: 
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Where k the number of steps is, i is the imaginary unit. 
 
THE APPLICATION OF FRACTIONAL CALCULUS IN VISCOELASTIC MATERIALS 
In 1940s, Scott Blair and Gerasimov proposed a model bounded between a Hookean solid ( )oα = and a Newtonian 

fluid ( 1)α = , their relationship is the fractional Newtonian fluid model can be written as ( )t u D tα ασ t ε=（） . 
 

Where σ and ε denote stress and strain, they are the function of time t . The coefficient ( 0)ut > is a single 
material constant (a generalized viscosity: u has unites of stress, while τ  has units of time), and exponent 

0 1)α α< ≤（  can be regarded as a second material constant. The experimental results motivated the development 
of the Scott Blair’s model; on the other hand, Mathematics inspired Gerasimov who was the first to consider an Abel 
kernel problem for relaxation modulus in Boltzmann’s general theory of viscoelastic.  
 
Bagley and Torvik proved that the molecular theory of Rouse ( for dilute solution of non- cross linked polymer 
molecules residing in Newtonian solvents) polymer contribution to stress that corresponds to a fractional Newton 
element whose order of evolution is a half the 1/ 2a = . They also stated (no proof) that the molecular theory of 
Zimm has a polymer contribution to that corresponds to a fractional Newton element whose order of evolution is 
two thirds theα = 2/3 . 
 
Gemant proposed the fractional viscoelastic model at the first, which changed the 1-order derivative to 1/2 
derivative of the stress in Maxwell fluid model: 
 

1/2 ( ) ( ) (uD t D t D tη σ η ε η ε + = = 1 / ）
 

 

where , 0u η <  are material constants. The fractional Maxwell fluid, which is a spring in series with a fractional 
Newton element, it can be represented as: 
 

1
0 0( ) ( ),D t D t tα α α α ηt σ ηt ε σ

t
−

+ + + = = 1
 

 

Where 0η >（） is the viscosity, 0τ >（） is the characteristic relaxation time, the exponent 1α α< ≤0（） is the 

fractional order which has the same value on stress and strain. σ +0 And ε +0 is the value on stress and strain when 
0t += .Then a limited non-uniform initial state of stress is taken into account and Gemant’s model does not possess. 

The fractional Maxwell fluid was first discussed in the manuscript of Caputo and Mainardi as a special case of their 
material model. 
 

Caputo introduced a fractional Voigt solid 
1 ( )at u p D taσ ε = + （）

to model the nearly rate-insensitive dynamic 

response of Earth's crust over large ranges in frequency when excited by earthquakes. Here 0pµ >， and 
(0 1)α α< ≤ are the material constants. As a mechanical model, this is a spring in parallel with a fractional 

Newton element. A more appropriate representation of solid behavior is the fractional Kelvin model, which is a 
spring in parallel with a fractional Maxwell element. This material model was introduced by Caputo and Mainardi 
and has the form: 
 

0 0( ) 1 ( ), pD t p D tα α α αt ε µ ε σ ε
t+ +   + = + =   1 （）

 
 

Where 0µ <（） is the rubbery modulus, 
αµ ρ τ µ>/（）（）  is the glassy modulus, 0τ >（） is the characteristic 

relaxation time, ρ τ>（） is the characteristics retardation time, and exponentα α< ≤0 1（）  is the fractal order of 
evolution. The model unlike the original model of Caputo, allows for and inhomogeneous initial state of finite stress. 
Bagley and Mainardi consider fractional order should be consistent of the stress and strain. And also it can be 
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considered as a fractional Kelvin model or a fractional standard linear solid model. 
 

CONCLUSION 
 
The fractional order systems are described by fractional differential equations, and the order can be any real number 
or plurality. The fractional system involve mathematics, physics and cybernetics. In mathematics, it is used in 
definition of the fractional calculus, analysis and digital implementation. In physics, it is applied in complex system 
modeling of the fractional calculus. In cybernetics, it is used to expanse the existing control theory to make a better 
control effect. The fractional calculus is just emerging in the numerical solution, this paper is just the tip of iceberg 
in numerical solution of fractional differential equation, we just made a preliminary attempt, and there are many 
questions still need to be further research. Currently, we are working on fractional simulations of the anti circuit and 
fractional neural networks and so on. 
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