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ABSTRACT

To detect and recognize passive fish acoustic signal from marine noisy environment, sparse decomposition is
present to realize the endpoint detection by coherent ratio feature. During training, the algorithm extracts feature of
fish and wave acoustic as test object under different signal-to-noise(SNR), feature from noisy signal segment is
extracted in the testing to classify with test object, finally it is realized by threshold endpoint detection method.
Experiment shows that effective signal segments can be detected more accurate by this algorithm than by the power
spectrum feature algorithm under low SNR.
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INTRODUCTION

With the increasing demand for marine resourcesin@diological resources development has been paie and
more attention, China has successfully applieddbbnology of exploring the sound of fish activadyinvestigate
fish resources in Yellow Sea and East China SesidBs, the technology is also applied to investighe North
Pacific Pollock resources. The acoustics of fisdehas become an important way to evaluate fistesgurces and
monitor marine ecosystem[1].

Compared to the active fish scattered acousticntolyy, passive fish radiation acoustic target nedbgy is
different from the traditional optical and activeoastic detection method. Passive acoustic techgols not
harmful. destructive to object, besides it can achieve keng observation monitor the marine environment
pollution and the damage of marine organism fronmé&uo activities[2-4]. Because the passive acoustia d
collected include ocean ambient noise and fish d@@gment which is the main research object, endpeiection
technology is the basis of subsequent recognitimhsarrvey.

Endpoint detection technology is the extensionae activity detection. The essential of the eridipdetection is
differentiate fish sound and noise by the differenaracteristics of the same parameters. The digtim usually
adopts the end-point judgment which is the decisigterion(such as threshold decision or mode ilaation) to

distinguish fish sound and noise signal. Voice \élgti detection technology depends on new charastieri
parameters(time-frequency parameters, Mel frequeregstrum coefficient, self-related distance, infation

entropy and combined characteristic parametersjlyntn improve the anti-noise performance of thgoathm[5].

Sparse decomposition algorithm proposed by Mahdt 2Zhang has become a hot topic recently, it has bédely
used in image, video, medical signal processing[b-Sparse decomposition algorithm can adapt tectehe
proper basis functions to complete decompositiodeurthe condition of lack of the statistical chaesistics of
noise. It also can use the redundant featureseoflittionary to capture the natural characteristicthe original
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signal. The coherent ratio in the sparse decompaosilgorithm can characterize the degree of redidignal
reduction and reflect the features of the origsighal from the signal reconstruction and de-ngisin

For noisy and passive fish sound segment, the eoheatio of passive fish sound and wave noiser afparse
decomposition under different noise-signal ratie extracted as test acoustic target in the trairdegides, feature
of moving noisy signal segment and the test argsiflad and divided. Finally, threshold decisiontineg is adapted
to endpoint detection.

COHERENT RATIO OF SPARSE DECOMPOSITION

1. System-level auto-zero

Sparse matching pursuit algorithm is a kind of digdapsignal decomposition algorithm which selectihg best
matching atom to approximate the local time-frequestructure in a complete high degree redundaitijodary
during iteration. From the perspective of passigé ficoustic signals, the main low frequency adousbration
signals delegate the sparse component of fish ticaignals. The signals have a certain structuress structure is
coincide with that of atom. However, high frequendyration is uncorrelated randomly. If meaningdtbms can be
extracted from the signals, the extracted part vélthe distribution of main passive fish sound.e3e meaningful
signal cannot be extracted and the iteration véliceased. During the process of signal sparse gexsition and
iteration, atoms which have biggest inner produitt wignal or residual will be selected. Sparseodguosition is a
process of constantly tracking and extracting atovectors which are best match to the original mstdual signal.
These extracted atomic vectors are distributiommafn passive fish sound. We adopt coherent ratidgeastion
terminal condition. The Gabor atom in the dictignsiructure can be represented as[15]:

6 (0= o cost +w). @

where, g(t) =e™is a Gaussian window functiony = (s,u,v,w)is time-frequency parameter which delegates

atomic expansion, displacement, frequency and pbasi&ion respectively,. Figure 1 is a program flowart based
on MP sparse de-noising.

The steps of concrete realization are as follows:

Define over-complete dictionaf9={gr"}( m=0,1,--, M -1) in Hilbert space, Wher#grm || =1.

Clean passive fish acoustic signal can be repredess: x(n), n=1,2:--N, N is the length of the signal.
x(nN) =R°%,n=1,2,--N , R is the initial residual signal.
Select the optimal ato), UD as the MP algorithm and I#(ROX, 9, >‘ reach largest. The obtained residual is

R'x = R0><—<R0x,gro>gro .Select the optimal atog) UD as the MP algorithm again and IKIRIX, gr1>‘ reach
largest. The obtained residual B?x = Rlx—<R1x, gr1>gn A ,, R™= Rm‘lx—<Rm‘lx, grmﬂ}grw1

The steps are iterated constantly, coherent ratidefined ad(R™x) = supKRmx,grm >‘/||R’“x|| Value will reduce
9y, D

gradually with the increase of the iterations.df ®© a convergence value, iterate value is M.tlBeM+1st residual:
RM*x = RMx—<RM X9, >ng :

M
Get y(n) = (R"™xg, )g, +R""x , n=12;-N,
m=0
Finally, select coherent ratio to parameters ofiatio signals.

Figure.2 shows sparse decomposition flow chartasfsjve acoustic signal(Campylomormyrus elephas}. Wave
of original fish acoustic signal covers the perldigh amplitude pulse and trailing signal.
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Fig.2 Passive acoustic signal (Campylomormyrus elephas) spar se decomposition

2. The comparison from coherent ratio between fish and ocean acoustic

Select three groups of clean passive acoustic I§@gapylomormyrus elephas) and three groups of wmssive
acoustic signals. Sampling frequency of fish adousignal is 44.1 kHz. Distribution figure is shovay sparse
decomposition, power amplitude and power spectruethod (order 26). Add the strong wave noise torclea
campylomormyrus elephas passive fish sound. Digidh figure is shown in Figure 4 under differentise-signal
ratio (Defined as the maximum energy ratio betwagnal and noise).

The amplitude and tendency of fish acoustic sigagdssimilar in Figure 3(a) and different from wasgund signal
obviously. Passive fish acoustic signal shows stnoon-stationary and remarkable low-frequency dttaristics.
But wave noise has good stability and unobviousfimguency with high frequency. During sparse degosition
iterative early, atomic signal is easy to match lthe frequency signal of passive fish acoustic difficulty to
match the wave noise of high frequency. Hence ¢k@&lual signal of fish acoustic signal is lowerrtlhreave sound
signal. It is almost lower one time in the figute.addition, the non-stationary of fish sound sigmakes wave
volatility greater than the sound of the wave. Ehare some individual differences between fish daignal and
wave sound signal in the low frequency in the Fé@(b). But most frequency is almost coincide. Thanme less
significant differences compared to coherent ratiaracteristic value. Compared to Figure3(b), tistridution of
individual show obvious from Figure3(c). But theme no significant discriminations in the low oghifrequency
between wave sound signal and fish acoustic sigi.power spectrum is present to compare later.
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Fig.4 Contrast of passive acoustic (Campylomor myrus elephas) under different SNR (strong wave noise)

Figure4(a) shows that the distribution of the ceherratio is close to the fish sound signal wherRS&more than
0dB. The distribution of characteristics is stithge to clean fish acoustic signals when -10dB SN#e distribution
of characteristics is close to the sea noise gthdwuaaen SNR reduced from -20dB. The distributidnnoisy fish

acoustic signal characteristics isn't approachimdigh acoustic signal or strong wave noise obviou#/ith the

SNR decreased gradually, the distribution of charéstics is tend to strong wave noise.

In conclusion, even if fish acoustic signals detdctre hidden in wave, discrimination can be redliznder -10Db
SNR. Therefore, the coherent ratio can be repredeat characteristics of different acoustic signete difference
between the characteristics is easy to realiz@dlssive fish acoustic signals’ endpoint testingrlat

EXPERIMENTAL SIMULATION BY ENDPOINT DETECTION

Figure5 shows that time domain waveform and endpibétection results under different low SNR(Gnathrons
petersii)
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Fig.5 Time domain waveform and endpoint detection results under different low SNR (Gnathonemus petersii)

From Figure5, the accuracy of endpoint detectioprowes with the SNR from 10dB to 30dB based on
characteristics of the power spectrum. Fish acosggnal can't be detected effectively when SNR$s than 20dB.
Signal and noise will be distinguished by the ceheratio characteristics when frames reach 400280dsamples.
Sparse decomposition algorithm can distinguisheth@points of acoustic signal and wave noise acelyrathen
SNR reaches -10dB, and the accuracy of 200 frambgyher than 400 frames. In fact, Figure3(c) aigife 4(b)
show the differenc between fish sound and waveenp@ver spectrum noise is tiny. The noise powectspe
characteristic is close to the distribution of wangise power spectrum when SNR is less than 0déh &toustic
signal cannot be detected in Figure5 by the powectsum method. Better discrimination degree detemthe
better accuracy of detection under 0dB and -10dBR.SN

Figure 2 and Figure 6(a) show that the amplitudiheftail and noise time domain are similar wherRS®N0dB, but
the frequency of tail part is lower than that ofseo Sparse decomposition algorithm will judgettiiesignal as fish
acoustic signal. Besides, with the frame reduding,accuracy of the detection will increase. WhiliRSs -10dB, it
can't be detected because the tail is submergedige totally when SNR is low. However, with theftsbf frame

reducing, the accuracy of the detection will insealhe accuracy of detection is higher when thenér shift is 200
rather than 400.

From Figure6, detection results are better on tralition of six features when 0dB SNR and sevetufea when
-10 dB SNR. We can improve the efficiency of thgoaithm by reducing the value of characteristics.
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Fig.6 Comparison of different endpoints of sparse (Gnathonemus petersii)

CONCLUSION

Passive fish radiation acoustic target technolegthé method different from the traditional optitathnology and
the active acoustic detection. Passive acoust dealtected include ocean ambient noise segmenfigincsound
signal segment and the fish acoustic signal isntlaen research object. In order to realize fish atouendpoint
detection technology, this paper adopts the spdesemposition algorithm to extract coherent ratiarecteristic
value. The algorithm extract the characteristizigadf clean passive fish sound and wave noise wiferent SNR
in the training stage as acoustic testing targetradteristics. Then, moving noise segment and ésting
characteristics are extracted to classify in thect®n stage. Finally, threshold decision methwddapted to detect
the endpoint. The experimental results show thatsgpdecomposition algorithm can realize the deteaif the
effective signal accurately compared with powercspen algorithm under the condition of low SNR.
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