Journal of Chemical and Pharmaceutical Research, 2013, 5(12):1467-1473

Research Article

ISSN: 0975-7384 CODEN(USA): JCPRC5

Synthesis and characterization of Schiff base complexes of Cu[ll] and Co[ll]

^aM. Shyamala Devi Thankachi and ^bS. Suthakumari

^aUdaya Institute of Technology, Ammandivilai ^bS. T. Hindu college, Nagercoil

ABSTRACT

The complexes [SGC, SGCO] of Cu [ll], and Co [ll] ions with a Schiff base [SG] derived from salicylaldehyde and sulfaguanidine have been investigated. The resulting complexes were characterized by UV/Vis IR, ¹HNMR spectral studies, elemental analysis, molar conductance, XRD, Magnetic suceptibility and antimicrobial activity. The molar conductance measurement indicates that the complexes were non electrolytes. The IR data shows that complexes were mono basic ligand with NO bidentate sites. The XRD study shows that the complexes were microcrystalline in nature, the antimicrobial activity of the complexes were tested against the bacterial, E.coli, Pseudomonous aeroginosa, Staphylococcus aureus and fungi Candida by the Disc diffusion method. The complex shows stronger antimicrobial activity than the free ligands.

Key words: Schiff base, Sulfaguanidine, Antifungal and Antibacterial activities.

INTRODUCTION

The study of Schiff base complexes of metals were eternal and drew the attention of scientists of all time due to a variety of applications in biological, clinical, analytical and pharmacological areas[1-3]. Tetra dentate Schiff bases with N_2O_3 donor atom set are well known to coordinate with various metal ions and this had attracted the interest of many authors [4-15]. Complexes of transition metals [II] which involve derivatives of salicylaldehyde and sulfa drugs have received considerable attention. Transition metal Schiff base complexes were used in various fields such as medicine, agriculture, and industries. Sulfa drugs were an important class of therapeutic compounds. In combination with certain other drugs, they were used for the treatment of various bacterial infections. Studies of the coordination behavior of sulfadrugs were of considerable interest because the coordination of metal ion was reported to enhance the biological activities of organic compounds. The schiffbases derived by the condensation of sulfonamides with salicylaldehyde were not only good complexing agents but also good bacteriocides. Chelating ligand containing O and N donor atoms show broad biological activity and special interest of variety of ways in which they were bonded to metal ions [16]. This paper reports the studies of Cu [II], Co [II] complexes of Schiff base derived from salicylaldehyde and sulfaguanidine due to pacity of information.

EXPERIMENTAL SECTION

Salicylaldehyde [Fluka], Sulfa guanidine [Fluka], Ethanol was used without further purification. Copper [ll] nitrate and Cobalt percholorate were reagent grade. A Fisher-100 infrared spectrophotometer was used to record the IR spectra as KBR and CSI disc at NIIST Trivandrum. A UV/Vis spectrum was measured by a Double Beam Spectrometer-2203. ¹HNMR Spectra of the synthesized compounds were recorded at NIIST Trivandrum using DMSO solvent and TMS as the internal standard. The Elemental analysis [C,H,N,S] were carried out using micro analytical technique on C,H,N,S,O using Elementa analyser at CUSAT Cochin. Molar conductivity measurements were recorded on a CM-82T Elico conductivity bridge in DMSO. The antifungal and antibacterial activities were

Compound

Schiff base

SGC

SGCO

v[C=N]

1618

1632

1620

v[O-H]

3327

3226

3456

tested by the diluted samples were plated on to Gelatin agar plates incubated at 37^oC for 24 hours by Disc diffusion method.

Synthesis of Schiff base

Added Salicylaldehyde [0.06ml, 0.1mmol] in 10ml absolute ethanol dropwise stirring to sulfa guanidine [0.107mg, 0.1mmol] in 10ml of ethanol in a beaker with the molar ratio1:1. The reaction mixture was heated for 30 minutes during which the colour of the solution change to yellow the yellow solid product was filtered and recrystallized in ethanol after 5hours.

Synthesis of complexes

A solution of 20ml copper nitrate [0.1mmol]/Cobalt per Chlorate [0.1mmol] in ethanol and added to a solution of ligand of sulfa guanidine. The reaction mixture was heated for 22 hours the complex precipitate was separated by filtration .Washed with ethanol and dried.

RESULTS AND DISCUSSION

All the complexes were insoluble in water, ethanol and methanol but soluble in DMSO.

IR spectra

The IR spectral data of the ligand showed a band at1618cm⁻¹ which was assigned to v [CH=N] stretching vibration a feature found in Schiff bases. This band is observable in the complex compounds suggesting that the ligand has coordinated to the respective metal ions resulting the formation of the complexes. The bands in the region 511-540cm⁻¹ and 450-500cm⁻¹ are attributed to [M-O] and [M-N] stretching vibrations respectively. The broad band in the region 3350-3560cm⁻¹ was accorded to v [O-H] stretching vibrations indicating the presence of water. The bands 1322cm^{-1} and 1152cm^{-1} were not changed because sulfonamide O₂ were not contributing in coordination with the metal ions. The IR data of ligand and their complexes were presented in table1.

Table 1 The IR spectra of the Schiff base and the complex

v[SO2]s

1159

1159

1152

v[C=O]

1569

1539

1529

v[M-O]

511

514

540

v[M-N]

450

500

522

v[SO2]as

1321

1321

1322

SGC - Copper complex, SGCO - Cobalt Complex, SG - Schiff base

Fig:1 IR Spectra of SGC

¹HNMR spectra

In the ¹HNMR Spectrum of the schiffbase SGC, SGCO recorded the characteristic singlet at 8.23ppm is due to the azomethine proton [-CH=N]. The signal at [2.31] is assigned to methyl group. The azomethine [CH=N] proton which was shifted to downfield in the spectra of all the complexes. This is attributed to the donation of lone pair of electrons by the azomethine nitrogen to the metal atom. The-OH proton signals were formed 10.40-11.80ppm. This was indicating the involvement of phenolic O_2 in the coordination of complexes. The 1HNMR spectra of ligands in DMSO-d6 revealed a multiplet at 6.01-7.95ppm corresponding to aromatic protons. Thus the NMR results support the IR inferences.

Fig 4: NMR Spectra of SGCO

Table 2: Analytical Data of the ligand and its complexes

S.No	Complexes	Color	Magnatia moment	Elemental Analysis % [found/ calculated]					
			Magnetic moment	С	Η	Ν	0	S	М
1	$SG[C_{14}H_{14}N_4O_3S]$	Yellow		52.8	4.40	17.6	15.09	10.06	
				49.95	4.16	16.65	14.27	9.51	
2	SGC[C ₁₅ H ₂₅ N ₅ O ₉ SCu]	Dark brown	1.67	34.98	4.8	13.36	27.49	6.10	12.34
				34.36	4.7	13.60	27.98	6.29	12.13
3	$SGCO[C_{15}H_{25}N_5O_9SCo]$	Orange	3.73	35.29	4.9	13.72	28.23	6.27	11.55
				34.66	4.8	13.48	27.73	6.16	11.34

Magnetic susceptibility

The magnetic susceptibility was measured by Guoy balance method. The observed μ_{eff} values present in the table to suggest that the octahedral geometry of Cu (ll) and Co (ll) complexes (fig 5).

Conductance measurements

The observed molar conductance was 6.9-12.0 Ohm⁻¹cm²mol⁻¹ all the complexes in 10⁻³ molar solution in DMSO were suggest the non-electrolytic nature of these complexes. Such a non zero molar conductance value for each of the complex in the present study is most probably due to the strong donor capacity of DMSO which may lead to the displacement of anionic ligand and charge of electrolytic type [17].

UV spectra

The electronic spectra of the ligand and the complexes were recorded DMSO solvent in the UV visible region. An absorption band found at the electronic spectra of the metal complexes recorded in UV region exhibit intra ligand and charge transfer transition of the C=N chromophore. On complexation this band was shifted to lower wavelength region at 250nm and249nm suggesting the coordination of azomethine nitrogen with Cu [11] and Co [11]] ions due to π - π^* . The spectra also shows the other transitions in the range of 246nm and247nm which can be assigned to n- π^* transitions. Transitions around 600-650nm may be due to d-d transitions which are characteristic feature of transition metal complexes. In the complexes bands below 300nm were attributed to intra ligand transitions [18-19].

Fig 7: UV Spectra of SGCO

XRD

The crystalline structure was performed by X ray diffraction analysis [XRD] utilizing Cu-K α [wavelength1.5406A⁰] radiation. Using the Scherer formula the crystallite size of the prepared complexes of SGC, SGCO have been calculated. Scherer formula can be written as [19].

Crystallite size D=0.94 λ/β cos θ

 λ is the wavelength of x ray used β is the full width at half maximum θ is the diffraction angle

Using this formula the size of the ligand complexes was microcrystalline in nature.

Biological activity

Antifungal and anti bacterial activities of the sulfaguanidine and its copper complex and cobalt metal complexes were studied against E.coli Pseudomonous aeroginosa Staphylococcus auerus and Candida in Agar media, the petri dishes were incubated at 24 hours at 37^{0} c. The results were indicated that in the table 3.

Table 3:	Zone	of Inhibition	(mm)
I unic of	Lone	or minimoreion	(

S.No	Organisms	Media	Chloramphenicol	SG	SGC	SGCO	NC
1	E.coli		23.0	6.0	6.0	19.0	6.0
2	Pseudomonas aeroginosa	Muller	21.0	6.0	6.0	6.0	6.0
3	S. aureus	Hinton Agar	22.0	6.0	6.0	6.0	6.0
4	Candida		22.0	6.0	6.0	6.0	6.0

CONCLUSION

The spectral data show that the ligand act as bidentate coordinating through nitrogen atom of the azomethine and oxygen atom of hydroxyl group of Salicylaldehyde. The XRD data shows that the ligand complexes were microcrystalline in nature. The molar conductance shows that the ligand complexes were non electrolytic in nature. The SGC complex was least active and the complex of SGCO was highly active in E.coli. This effect may be due to the co ordination of metal ion. They killed the cells of bacteria and fungi. So they can be used as anti bacterial and antifungal agents.

Acknowledgement

Authors owe the deepest gratitude to The Management, Principal and HOD of chemistry S.T.Hindu College, Nagercoil who made us available the support in a number of ways for completing this research project successfully.

REFERENCES

[1] T Hitoshi, N Tamao, A Hideyaki, F Manabu and M Takayuki, *Polyhedron*, 1997, 16(3787).

[2] T Punniyamurthy, SJS Kalara and J Igbal, *Tetrahedron let.*, 1995, 36(8497).

[3] G Trivedi and NC Desai, *Indian j. chem.*, **1992**, 31B (366).

[4] M Mokhles and ABD Elzaher, J Chin, Chem.soc-Taip, 2001, 48, 153-158.

[5] R Ramesh, PK Suganthy and K Natarajan, Synth. Inorg. Met-Org. Chem., 1996, 26, 47-60.

[6] Zhu Xinde, Wang Chenggang, Lu Zhiping, Le Zhifeng and Wuzhshen, *Synth.Inorg.Met-Org.Chem.*, **1966**, 26, 955-966.

[7] RA Siddiqui, P Raj and AK Saxena, Synth.Inorg.Met-Org.Chem., 1996, 26, 1189-1203.

[8] BN Ghose and KM Lasisi, Synth.Inorg.Met-Org.Chem., 1986, 16, 1121.

[9] R Yuan, Y Chain, D Liu, D Gao, J Li and R Yu, Anal. Chem., 1993, 65, 2572-2575.

[10] NK Jha and DM Joshi, Synth.Inorg.Met.-Org.Chem., 1984, 14, 455-465.

[11] Y Ohashi, Bull, Chem.soc.JPA., 1997, 70, 1319-1324.

[12] Yee-Lokwong, Jian-Fang Ma, Wing-Fong Law, Yan Yan, Wing-Tank Wong, Ze-Ying Zhang, CW Mak Thomas and KP Ng Dennis, *Eur J.In Org. Chem.*, **1999**, 313-321.

[13] Huseyin Koksal, Mustafa Dolaz, Mehmet Tumer and Selahattin Serrin, *Synth.Inorg.Met-Org. Chem.*, **2001**, 31, 1141-1162.

[14] LJ Boucher and CG Goe, Inorg. Chem., 1976, 15, 1334-1340.

[15] Roslyn Alkins Gren Bewer, Ernest Kokot, Garry M Mockler and Ekk Sinn, Inorg. Chem. 1985, 24, 127-134.

[16] SR Kelode, PR Mandlik, Journal of Chemical and Pharmaceutical Research, 2012, 4(9), 4181.

[17] W J Geary, Coord Chem Rev., 1971, 7, 81.

- [18] ABP Lever, Inorganic Electronic spectroscopy, Elsevier: London, **1980**, 481.
- [19] PB Chakravarthi, PJ Khanna, *Ind. Chem.soc.*, **1985**, 77, 23.
- [20] C Krill, Birringer, Philos, Mag.lett., 1998, 621.