Synthesis and Bioactivity Evaluation of Cinnamic Acid Esters from *Oxalis pes-caprace*

B. Venkateswara Rao, K. Ramanjaneyulu* and T. Bhaskara Rao

Department of Engineering Chemistry, Andhra University, Visakhapatnam, India

ABSTRACT

Synthesis of cinnamic acid esters 4a-c to 7 was achieved starting from appropriately substituted benzaldehydes. While compound 4a-c to 7 was exhibited potent antioxidative activity in both the NBT and DPPH-radical scavenging models among the synthesized cinnamic acid ester derivatives. No ester derivative showed significant 5-Lox, Tyrosine inhibitory and Cytotoxic activities in the present study.

Keywords: Oxalis pes-caprace; synthesis; cinnamic acid ester; antioxidative; cytotoxicity.

Abbreviations: NBT, nitroblue tetrazolium; DPPH, 1,1-diphenyl-2-picrylhydrazyl; MDC, methylenedichloride; N,N-DMA, N,N-dimethylaniline; DMAP, 4-dimethylaminopyridine.

INTRODUCTION

Hydroxycinnamic acid esters are widely distributed in plant kingdom [1,2] and are known to exhibit a wide range of pharmacological activities such as antioxidative [3,4] cytotoxic [5,6], antimicrobial [7,8] and antiviral activities [9]. Recently, Lucio revitera et al. isolated few cinnamic acid acid ester derivatives 4a-c to 7 from *Oxalis pes-caprace* and reported their phytotoxic activities [10]. Since we are interested on the bioactivity of natural phenolic secondary plant metabolites especially hydroxycinnamic acid esters [11,12], here we would like to report the synthesis and bioactivity studies on the synthesized cinnamic acid esters, 4a-c to 7, for the first time.
EXPERIMENTAL SECTION

Melting points were recorded on a V Scientific melting point apparatus, in open capillaries and are uncorrected. IR spectra were recorded on a Perkin-Elmer BX1 FTIR Spectrophotometer, 1H NMR (400 MHz) & 13C NMR (100 MHz) spectra on a Bruker 400 MHz NMR spectrometer and the values for chemical shifts (δ) being given in ppm and coupling constants (J) in Hertz (Hz). Mass spectra were recorded on Agilent 1100 Series LC/MSD and elemental analysis was carried out on a Vario El Elementar instrument. Column chromatography was carried out using ACME silica gel (100-200 mesh/finer than 200 mesh). 6 was prepared using standard literature procedure [13] in quantitative yield.

RESULTS AND DISCUSSION

3.1. General Procedure

The desired esters were synthesized as shown in Scheme-1 and Scheme-2 starting from 3,4,5-trimethoxybenzaldehyde. 3,4,5-Trimethoxycinnamic acid (4a-c) was prepared using Knoevenagel-Doebner reaction conditions starting from 3,4,5-trimethoxy-benzaldehyde using malonic acid and pyridine in presence of piperidine as a catalyst in 95% yield [13].

Esterification of 4a-c with monomethoxy resorcinol and resorcinol using DCC [14] as dehydrating agent in presence of DMAP as a catalyst (Scheme 1) yielded 3-methoxyphenyl-3-(3',4',5'-trimethoxyphenyl)propionate (1) and 3-hydroxyphenyl-3-(3',4',5'-trimethoxyphenyl) propionate (2) (65% and 56%), respectively.

2-Hydroxyethyl-3-(3',4',5'-trimethoxyphenyl)propionate (3) was prepared by the esterification 6 with ethylene glycol in presence of DCC (Scheme 2, 45%). O-Acetylation of 3 using acetic anhydride in pyridine gave 2-(acetyloxy)ethyl-3-(3',4',5'-trimethoxyphenyl)propionate (4) in 73% yield [15]. 3 was treated with aluminum chloride to obtain 2-hydroxyethyl-3-(4'-hydroxy-3',5'-trimethoxyphenyl)propionate (5) in 50% yield (Scheme 2). The spectral data of all the synthesized esters are well coincides with those obtained from natural source [10]. The details of the experimental procedure were given in experimental section.

The above synthesized cinnamic acid esters were evaluated for their bioactivity regarding antioxidative and 5-Lipooxigenase, tyrosine inhibitory and cytotoxic activities. Antioxidative potency was carried out in both the DPPH free radical inhibition and superoxide radical inhibition (NBT) methods [16]. The only derivative 5 exhibited significant anti-oxidative activity both in NBT and DPPH free radical inhibition models with $IC_{50} = 11$ and 29 $\mu g/ml$, respectively. This clearly indicates the importance of hydroxyl group (s) on both the acid and alcohol part of the cinnamic acid ester derivative to exhibited better anti-oxidative activity. No synthesized cinnamic acid ester analog was showed any significant 5-Lipooxigenases, Tyrosine inhibitory activities even at higher concentrations.

The cytotoxic activity of the above active compound 5 was evaluated using five different human cancer cell lines namely, colorectal carcinoma, HT-29 (A), breast carcinoma, MDA-MB-231 (B), pancreas carcinoma, MIA-PaCa2 (C), prostate adenocarcinoma, DU-145 (D) and oral carcinoma, KB (E). However, this compound did not exhibit any significant inhibition of above mentioned
cancer cell lines (A: 4; B: 17; C: 30; D: 2 and E: 25% of inhibition) even at higher concentration (300µg/ml), respectively.

Reagents and conditions: (i) Malonic acid, Pyridine, Piperidine, 120 °C, 3 h, 95%, (ii) 3-Substitutedphenol, DCC, DMAP, MDC, rt, 1-2 h.

3.2. Synthesis of Cinnamic Acid Ester Derivatives:
To a stirred solution of 2 (1 g, 4.2 mmol) in MDC (25 ml) was added DCC (6.3 mmol) in MDC (5 ml) and stirred for about 15 min at rt. To the above reaction mixture was 3-Substitutedphenol (520 mg, 4.2 mmol) followed by the addition of catalytic amount of DMAP and continued to stir at rt for further 1 h. DHU formed was filtered and filtrate was poured into water, extracted with ethyl acetate (3 x 25 ml). The combined ethyl acetate was washed with water, brine solution and dried over anhydrous Na₂SO₄. The crude obtained by the evaporation of the solvent was chromatographed using hexane: ethyl acetate (70:30) to yield corresponding ester as a colourless solid (939 mg, 65%);

3.2.1. 3-Methoxyphenyl-3-(3,4,5-trimethoxyphenyl)acrylate (4a):
Yield: 65%, mp: 82-84 °C; IR (CHCl₃) νmax cm⁻¹: 1722, 1610, 1582, 1421, 1245, 1128; NMR δH (400 MHz, CDCl₃): 3.81 (3H, s, Ar-OCH₃), 3.90 (6H, s, Ar-OCH₃), 6.53 (1H, d, J = 15.6 Hz, H-3), 6.73 (1H, t, J = 2.4 Hz, H-2’’), 6.78 (2H, m, H-4’’6’’), 6.81 (2H, s, H-2’,6’), 7.30 (1H, t, J = 8.0 Hz, H-5), 7.77 (1H, d, J = 15.6 Hz, H-2); ¹³C NMR (100 MHz, CDCl₃): δ 165.2 (C-9), 160.6 (C-3’’), 153.6 (3C-3,4,5), 151.9 (C-1’’), 146.5 (C-7), 129.8 (C-1), 129.6 (C-5’’), 116.5 (C-8),
3.2.2. 3-Hydroxyphenyl-3-(3,4,5-trimethoxyphenyl)acrylate (4b):
Yield : 56%, mp: 118-20 °C; IR (CDCl$_3$) $\nu \text{max} \text{cm}^{-1}$: 3432, 1722, 1582, 1458, 1243, 1129; NMR δ_H (400 MHz, CDCl$_3$): 3.90 (9H, s, 3 x Ar-OCH$_3$), 6.50 (1H, d, J = 15.6 Hz, H-3), 6.68 (1H, t, J = 2.4 Hz, H-2), 6.73 (2H, m, H-4''6''), 6.81 (2H, s, H-2',6'), 7.25 (1H, t, J = 8.0 Hz, H-5), 7.78 (1H, d, J = 15.6 Hz, H-2); 13C NMR (100 MHz, CDCl$_3$): δ 165.7 (C-9), 157.1 (C-3'), 153.4 (C-5), 151.6 (C-1'), 146.8 (C-7), 140.7 (C-4), 130.0 (C-5'), 129.6 (C-1), 116.4 (C-8), 113.3 (C-4'), 113.2 (C-6'), 109.2 (C-2'), 105.8 (C-2,6), 61.0 (C-Ar-OCH$_3$), 56.2 (C-2 x Ar-OCH$_3$); LCMS (Negative Mode): 329 [M-H]$^+$.

3.2.3. m-tolyl 3-(3,4,5-trimethoxyphenyl)acrylate (4c):
Yield : 62%, mp: 132-133 °C; IR (CHCl$_3$) $\nu \text{max} \text{cm}^{-1}$: 1745, 1640, 1570, 1420, 1350, 1120; NMR δ_H (400 MHz, CDCl$_3$): 1.25 (3H, s, Ar-CH$_3$), 3.80-3.92 (9H, s, Ar-OCH$_3$), 6.52 (1H, d, J = 15.6 Hz, H-3), 6.71 (1H, t, J = 2.4 Hz, H-2), 6.79 (2H, m, H-4''6''), 6.83 (2H, s, H-2',6'), 7.32 (1H, t, J = 8.0 Hz, H-5), 7.77 (1H, d, J = 15.6 Hz, H-2); 13C NMR (100 MHz, CDCl$_3$): δ 166.2 (C-9), 163.6 (C-3'), 152.4 (3C-3,4,5), 150.5 (C-1'), 145.1 (C-7), 126.4 (C-1), 125.5 (C-5'), 114.2 (C-8), 113.5 (C-6'), 111.2 (C-4'), 107.7 (C-2'), 105.8 (C-2,6), 61.0 (C-Ar-OCH$_3$), 56.2 (C-2 x Ar-OCH$_3$); LCMS (Positive Mode): 306 [M+Na]$^+$, 329 [M+K]$^+$.

3.2.4. 2-Hydroxyethyl -3-(3,4,5-trimethoxyphenyl)propionate (5)
Title compound was prepared by adopting the same procedure as described for 1, starting from 2 (0.5 g, 2.1 mmol) and ethylene glycol (130 mg, 2.1 mmol) as colourless solid (266 mg, 45%); mp: 94-96 °C; IR (CDCl$_3$) $\nu \text{max} \text{cm}^{-1}$: 3492, 1681, 1626, 1585, 1419, 1284, 1123; NMR δ_H (400 MHz, CDCl$_3$): 3.89 (9H, s, 3 x Ar-OCH$_3$), 3.91 (2H, m, H-1'), 4.35 (2H, m, H-2'), 6.39 (1H, d, J = 15.6 Hz, H-3), 6.76 (2H, s, H-2',6'); 13C NMR (100 MHz, CDCl$_3$): δ 167.2 (C-9), 153.4 (C-3,5), 145.3 (C-7), 140.5 (C-4), 129.7 (C-1), 116.8 (C-8), 105.6 (C-2,6), 66.1 (C-1'), 61.2 (C-2'), 60.9 (C-Ar-OCH$_3$), 56.2 (C-2 x Ar-OCH$_3$); LCMS (Positive Mode): 283 [M+H]$^+$, 305 [M+Na]$^+$.

3.2.5. 2-Acetylethyl-3-(3,4,5-trimethoxyphenyl)propionate (6)
This compound was prepared by the acylation of 5 by adopting standard literature procedure of acetylation using acetic anhydride and pyridine [15] as a colourless solid (73%); mp: 94-96 °C; IR (CDCl$_3$) $\nu \text{max} \text{cm}^{-1}$: 1739, 1690, 1503, 1244, 1120; NMR δ_H (400 MHz, CDCl$_3$): 3.88 (9H, s, 3 x Ar-OCH$_3$), 3.91 (2H, m, H-1'), 4.35 (2H, m, H-2'), 6.39 (1H, d, J = 15.6 Hz, H-3), 6.76 (2H, s, H-2',6'); 13C NMR (100 MHz, CDCl$_3$): δ 170.7 (C-OAc), 166.5 (C-9), 153.4 (C-3,5), 145.3 (C-7), 140.5 (C-4), 129.7 (C-1), 116.7 (C-8), 105.4 (C-2,6), 62.2 (C-1',2'), 60.9 (C-Ar-OCH$_3$), 56.1 (C-2 x Ar-OCH$_3$); 20.8 (C-OCH$_3$); LCMS (Positive Mode): 283 [M+H]$^+$, 305 [M+Na]$^+$.

3.2.6. 2-Hydroxyethyl-3-(3,5-dimethoxy-4-hydroxyphenyl)propionate (7)
This compound was prepared by the monodemethylation of 5 using standard literature procedure using AlCl$_3$[17] as a half-white solid (48%); mp: 98-100 °C; IR (CDCl$_3$) $\nu \text{max} \text{cm}^{-1}$: 1701, 1516, 1336, 1119; NMR δ_H (400 MHz, CDCl$_3$): 3.92 (8H, s, 2 x Ar-OH and H-2' both are merged), 4.35 (2H, m, H-1'), 5.78 (1H, brs, H-OH), 6.34 (1H, d, J = 15.6 Hz, H-3), 6.78 (2H, s, H-
2''',6''''), 7.63 (1H, d, J = 15.6 Hz, H-2); 13C NMR (100 MHz, CDCl3): δ 167.4 (C-9), 147.3 (C-3,5), 145.7 (C-7), 137.5 (C-4), 125.8 (C-1), 115.2 (C-8), 105.3 (C-2,6), 66.1 (C-1'), 61.4 (C-2'), 56.4 (C-2 x Ar-OCH3); LCMS (Negative Mode): 267 [M-H].

Biological Activity
The antioxidative activity of the synthesized esters in both the NBT and DPPH free radical-scavenging mechanisms, was determined according to the procedure described in our previous communication [16] and 5-lipoxygenases, Tyrosine inhibitory activity are determined according to the literature procedure [18]. Cytotoxic effect of the compound 7 was carried out by adopting literature procedure against Human colorectal carcinoma, HT-29, breast carcinoma, MDA-MB-231, pancreas carcinoma, MIA-PaCa2, prostate adenocarcinoma, DU-145 and oral carcinoma, KB cell lines [19].

Acknowledgements
The authors are thankful to IICT, Hyderabad for 1H-NMR, 13C-NMR, Mass and IR spectra and Department of Biochemistry, S.V. University, Tirupathi for Biological activities.

REFERENCES
[15]. Acetylation