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ABSTRACT

The aim of this paper is to explore the statistteahniques used for the analysis of Electroenceginaphy Signals
obtained from Epileptic Patients. The Electroenadpfram (EEG) is actually a measure of the cumuafiring of
neurons in various parts of the brain. The EEG aord the information with regard to the changeshia electrical
potential of the brain which is obtained from a sétrecording electrodes. The study of the statistanalysis
techniques paves the way for the easy classificatie@pilepsy risk levels from EEG signals as arkistep.
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INTRODUCTION

The Electroencephalogram (EEG) is actually a meastithe cumulative firing of neurons in varioustpaof the
brain [1]. The EEG contains the information witlyaed to the changes in the electrical potentidhefbrain which
is obtained from a set of recording electrodes.eg&aly the EEG data includes both the standard feaves and
shortly occurring electrical patterns. The standaeveforms may accompany with rapid variations rimphtude,
frequency and phase. The electrical patterns ssicdharp and spike waveforms and spindles may aqurdsent.
EEG patterns can be modified using a wide rangesasfables including hormonal, biochemical, metaholi
circulatory, neuro electric and behavioral fact&arlier, just by visual inspection the encephapiper was able to
distinguish the normal EEG activity from the abnatBEG activity. The most important activity detsgttfrom the
EEG is the epilepsy and it is characterized byetkessive activity by a part or all of the centralvous system. By
observing the different EEG waveform patterns tifieietnt types of epileptic seizures are charazésti In order to
quantify the changes occurring based on the EE@Gafsgthe application of computers has made itiplesso
effectively apply a host of methods for the reaidimonitoring and detection of epileptic seizufese EEG is a
vital tool used for the diagnosis, monitoring andnaging of neurological disorders related to egyep

2.STUDY OF STATISTICAL PARAMETERS USED FOR THE ANALYSIS OF EEG SIGNALS OF
EPILEPTIC PATIENTS

The statistical parameters taken here for the sardyMean, Variance, Standard Deviation, Skewn€ggpsis,
Hurst exponent, Entropy, Mutual Information, Expaicin Maximization and Modified Expectation Maxiration.

21 MEAN

The mean or average is the sum of the total calleatr set of numbers divided by the total numbenwmbers
in the collection. The set of results usually isnfr a survey or an experiment. The mean taken Iseaeithmetic
mean and one should not get confused with geomteizn or harmonic mean.
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The average value of a distribution is the meanckwvis given by
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2.2VARIANCE

The Variance generally shows that how far a setaoge or series of numbers is spread out. A Vadasc
always or mostly non-negative. If the data points @ose to the mean, then it signifies it has alkrariance.
Similarly if the data points are spread out arotimel mean and from each other, then it indicategrg figh

variance. In general, the probability distributibas several descriptors and variance is just onerh. The
variance is also one of the moments of a distrdsutActually, the variance is a parameter that dbss both the
actual probability distribution and theoretical patility distribution of observed population of nbers or a not
fully observed population from which the samplenafmbers can be easily drawn. It is an index of efisipn
expressed in the same units as the observations \rbich it is calculated. It is always given by tfalowing

expression.
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2.3 STANDARD DEVIATION
Standard Deviation is calculated as the squareafogariance.

StdDeviatbn = v/Variance

It generally measures the amount of variation ftbmaverage. If the data points are very closb¢atiean, then it
shows a low standard deviation and if the datatpaine spread out over a large range of valuesithedicates a
high standard deviation. The Standard Deviatioamfthing, say random variable, standard data sptaiyability
distribution is nothing but the square root of ttegiance. The greatest advantage of taking StanQaxdation is
that it has the property to express the same arithe data.

2.4 SKEWNESS

It is just the measure of the asymmetry of the pbiliy distribution of a real-valued random vatiatabout its
mean. Sometimes the skew values can be positiwtioer negative or even undefined at times. Intdipg the
skew value in a qualitative manner is very compédaand it is significant to note that the relasibip of mean and
median is not determined by skewness. Skewnessahaile range of benefits in many areas. The indinat
whether deviations from the mean are going to Isitipe or negative are made clear by understaniiegkewness
of the dataset.

When the portion of the frequency polygon to thgitiof the mean is the mirror image of the portiorthe left, the
distribution is said to be symmetrical. If more eb&tions lie on one side of the mean than on thercside, the
distribution is skewed. The skewness is chara@drizy the mean of the distribution shifting frone tmedian. The
Pearson’s coefficient of skewness is given as ¥lo
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25KURTOSIS
Kurtosis denotes mainly the peakedness of prolghiiistribution function of real valued random \atsle. It
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also denotes the shape of the distribution functiad their different ways of quantifying it. Integpation of
kurtosis can be done in several ways and it mamdjudes peakedness, tail weight and lack of shersldHigher
Kurtosis means that the variance is more and iltesn infrequent extreme deviations. The most ocamly

used Kurtosis includes the Pearson’s Kurtosis aedeixcess Kurtosis which generally provides a coiapa of

the shape of a given distribution to that of thenmal distribution. Other types of Kurtosis are ats@ilable such
as platykurtic distributions where it deals withgaéve excess kurtosis and leptokurtic distribusiomhere it
deals with positive excess kurtosis respectively.

The coefficient of kurtosis is calculated using themula.

n
Xi
i=1

(Note: whergu is not known, the sample meah=

is used.)

Ideally for a normal distribution, the skewness &uodltosis are zero. Hence, a nonzero value indictitat the
distribution is not purely normal Gaussian disttibo.

2.6 HURST EXPONENT

As Hurst exponent is a measure of self-similaptgdictability and the degree of long-range depeodén a time-
series [2]. It is also a measure of the smoothokadractal time-series based on asymptotic betafithe rescaled
range of the process. Hurst's generalized equatisime series, Hurst exponent H is defined asfdhews

H = log(R/S)
log(T)
where T is the duration of the sample of data affl R the corresponding value of rescaled rangés the
difference between the maximum and minimum dewviatiom the mean while S represents the standaritit@v.

Hurst exponent is estimated by plotting (R/S) versun log-log axes. The slope of the regressioa &ipproximates
the Hurst exponent.

2.7 ENTROPY

It is nothing but a measure of uncertainity of dipalar random variable. The entropy H(X) for atpaular discrete
random variable X is defined as follows

H(X) ==Y p(x)log p(x)

The entropy of X is also expressed as the expactieas: ofl0g , where X is drawn according to probability

p(X)

mass function p(x).

Thus, H (X) = E, log 1

p(X)

Usually the above definition is related to the digfon of entropy in thermodynamics.

28 MUTUAL INFORMATION
Mutual Information is nothing but the measure of gimount of information that one random variablataims
about another random variable [3]. By having thewdedge about the other random variable, the réoluéh the
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uncertainity of one random variable can be easilyedusing mutual information. Two random variab¥eand Y
are considered which has a joint probability masstion(x,y) and marginal probability mass functjmt) and p(y)

:I'he relative entropy between the joint distributenmd the product distribution (i.e.) p(x) and pig)given as the
mutual information I(X; Y) as is expressed matheoadly as follows:

p(X, y)
(XY
(X;Y) = ;;p(xy) o9 P

29 EXPECTATION MAXIMIZATION
The Expectation Maximization (EM) is often definasl a statistical technique for maximizing compi&elihoods
and handling incomplete data problem [5]. EM algori generally consists of two steps ham@&ypectation Step

(E Step):Say for instance consider datg which has an estimate of the parameter and thenaisselata, the
expected value is initially computed easily. Fogigen measuremeny, and based on the current estimate of the

parameter, the expected valueXyfis computed as given below:

AU = E[ x| % ]
This implies,){kﬂ] =Y LAEk]
O

4 2

Maximization Step (M Steplfrom the expectation step, we use the data whahagtually measured to determine
the Maximum Likelihood estimate of the parametdre et of unit vectors is considered to b&a€onsidering x
X, the likelihood ofX is:

P(Xlu K, H, k)—ch ...... Xol Ky KXo X | ] KX XL K)

(Mu@ﬂ G (k) &

The log likelihood of the above equation can betemi as:
L (X1, k) =InPXu, k) =ningk) + k'
where r =YX

2.10 MODIFIED EXPECTATION MAXIMIZATION (MEM) ALGORITHM

In this paper, a Maximum Likelihood (ML) approacthish uses a modified Expectation Maximization (EM)
algorithm for pattern optimization is used [4]. $anto the conventional EM algorithm, this algbrit alternated
between the estimation of the complete log — Iik@bd function (E — Step) and the maximization a$ #stimate
over values of the unknown parameters (M - SteptaBse of the difficulties in the evaluation of Mk function,
modifications are made to the EM algorithm.

1. The initial values of the maximum likelihoodrameters like mean, covariance and mixing weighesfaund
out.
2. Each xto its nearest cluster centreghby Euclidean Distance (d) is assigned.

3. In maximization step, use Maximizati€d(&, 8') .The likelihood function is written as:-

QE™,0)=mexQ@ F)8" = agmaq g
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d(p.d=dpg=3 (4= P’

S
4.The iterations are repeated and the loop shmtithe stopped unt“@I — &' || becomes small enough.

The algorithm ends when the difference betweerldgdikelihood for the previous iteration and cuntréteration

fulfills the tolerance level. The method of maximdikelihood corresponds for many well — known sttitial

estimation methods. For instance , one may beim¢gyested to learn about the heights of adult fergaaffes in a
particular zoo, but it might be unable becausemétand permission constraints, to measure thehheigeach and
every single giraffe in that population. If the dieis are assumed to be normally Gaussian distdbatth some
unknown mean and variance, then the mean and earieen be estimated mostly with Maximization Likebd

Equalization (MLE) by just knowing the heights ofse of the samples of the overall population.

CONCLUSION

The aim of this paper is to explore the statistieahniques used for the analysis of Electroendeghaphy Signals
obtained from Epileptic Patients. The above memtibstatistical techniques are very much usefultferanalysis of
dimensionally reduced EEG data signals and alsovémious other statistical analyses. Thus the stofdyhe

statistical techniques for the analysis of electoephalography signals from epileptic patients ficdd great
significance in the field of bio-signal processing.
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