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ABSTRACT

S-galactosidase is a vital enzyme with diverse applications in food and pharmaceutical industries. Response surface
methodology was used to study the effects of fermentation parameters on S-galactosidase enzyme production. The
effect of pH, temperature, carbon source, nitrogen source, inoculum size and incubation time on the production of -
galactosidase from Aspergillus terreus KUBCF1306 were studied by employing statistical methods. Objective of the
present work is to improve the yield of S-galactosidase activity by using statistical methods like Placket & Burman
designs (PBD) and Response surface methodology (RSM). Screening of variables to find their relative effect on -
galactosidase production was done using Plackett-Burman design. Central composite experimental design
maximi zes the amount of information that can be obtained, while limiting the number of individual experiments. Out
of the six factors screened, pH, carbon source and temperature were found to influence the enzyme production
significantly. Results of the statistical analysis showed that the lack of fit, of the model was good in all cases. The
response surface methodol ogy was found to be useful in optimizing and determining the interactions among process
variables in f-galactosidase enzyme production.

Key words: B-galactosidase, Response surface methodology, &te8lrman desigrispergillus terreus, Central
composite design.

INTRODUCTION

Enzymes are proteins with specific catalytic fuoies that are produced by all living celisgalactosidase is a vital
enzyme with diverse applications in molecular bigi@and industries [1]. Enzymatic hydrolysis of tzs# is one of
the most important biotechnological processes indfindustry to improve sweetness, solubility, flavend
digestibility of dairy products. It is realised nzyme p-galactosidaseptD-galactoside galactohydrolase, EC
3.2.1.23), it is also called as lactase. Free pedjons of B galactosidases have been exploited in various
applications such as industrial, biotechnologicaledical, analytical and in different other applioas. -
galactosidase occurs widely in nature and is preduzy a number of microorganisms [2{he major industrial
enzymes are obtained frofspergillus sp. andKluyveromyces sp. galactosidase frordluyveromyces lactis is one

of the most widely used enzymes [3,4,5,6].

Optimization of biochemical coupling can be done dyploying either univariate or multivariate stgiés.
Univariate procedure may fail since the effect o€ @ariable may be

dependent on the level of others involved in thdindgation. Multivariate optimization schemes invel

experimental designs for which the levels of ak thariables are changed simultaneously. Respongacsu
methodology (RSM) has become very popular in regeatrs, with wide range of applications in biocheahi
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process optimization [1]. The conventional approa€toptimizing one-factor-at-a-time method andntadlves
changing one factor at a time and maintaining &t factors at a fixed level. This method is exebntime saving
and is unable to detect the effect of interactibmasious factors [7]. To overcome this difficullgesponse surface
methodology (RSM), which is a collection of statist techniques applicable to experimental desigodel
building, evaluating the effects of factors andesciing optimum conditions of factors for desiratgigponses.

Furthermore, this method allows the developmennhathematical models that permit assessment ofeflegance,
statistical significance of the factors being detidte as well as evaluates the interaction eftaetween the factors
[8]- In addition, response surface methodology (R$$an competent strategic experimental tool byctvhihe
optimal conditions of a multivariable system mayda¢ermined. The aim is to obtain mathematical risosleowing
the dependence of the enzyme activity on independemiables. The mathematical dependences are fosdte
prediction of the optimum values of the independemiables, ensuring optimal yield [9, 10].

Plackett—-Burman design [11] is one such method lihatbeen frequently used for screening multipbéofa at a
time. This experimental design is particularly usdbr initial screening as it is used for the astion of only the
main effects. The significant factors obtained fréine screening experiments could be further opgohiby
employing response surface methodology that endliestudy of interaction effects among differeatiables.

The principle objective of this study was to optimithe production of extracellulgi-galactosidase from
Aspergillus terreus KUBCF1306 using statistical methods to achieveimarn yield.

EXPERIMENTAL SECTION

Organism and inoculum preparation

Fungal strains were isolated from garden soil olehifrom Coimbatore, Tamil Nadu by dilution platethod. The
strains were morphologically identified by Aghark&esearch Institute, Pune. Fungal strains were teiagd on
PDA at 30°C for subsequent use.

Submerged fermentation

The basal medium for maintenance of the culture eeasposed of the following (in g/L): Lactose - 20NANG; -
2.0, KHPQ, - 1.0, KCI - 0.5, MgSQ@Q 7H,0 - 0.5, FeSQ 5H,0 - 0.01, with pH adjusted to 5.0 (Citrate phosphat
buffer, 1000m mol ).

B-Galactosidase assay

B-Galactosidase activity was determined by usingtmphenyl-p —d galactopyranoside (0NPG) as substrate. 50l
of crude enzyme sample were added to 950ul of 2.50MPG solution in 100mM citrate-phosphate buffer.
Following 10 min incubation in a water bath at 603@l of 10% (w/v) sodium carbonate solution wadextiand

the absorbance of the final mixture was measuredl@tnm in order to determine the amount of rel@aseitro-
phenol (oNP). One unit ¢gf-galactosidase activity was defined as the amofititeoenzyme required to liberate 1
pmole of oNP per minute under assay conditions.[12]

Experimental Design

One variable at a time method

Optimization off-galactosidase production was done by using diffeplysical parameters one at a time approach
keeping the other as constant. Tdiferent physical parameters are pH, temperatcaghon sources, nitrogen
sources, incubation time, inoculum size. The finstimization step was carried out using ‘one vdeadt a time’
experimental approach to identify the significaadtbrs affecting-galactosidase production gpergillus terreus
KUBCF1306 and it was investigated by using differegro-industrial wastes as a substrate for subederg
fermentation.

Plackett-Burman design

For the selection of various variables, “Design &x®.0.3.1" (Stat-Ease Inc, Minneapolis, USA) wed to
generate and analyze the experimental design eké&taBurman. The optimum concentrations of theiakdes
were obtained by the graphical and numerical amalysing the Design Expert program, based on titerion of
desirability. Plackett and Burman design was firsthplied to screen the significance of sixteen ponents based
on improved enzyme production. Finally, Box-Behnldasign and response surface methodology wereefurth
adopted to derive a statistical model for optimizihe medium components fpigalactosidase production
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Box—Behnken design

A Box—Behnken design was employed to investigageoitimization of the most significant variablefeafing the
enzyme production. Box—Behnken design [13] folloi@dthe production of-galactosidase b#spergillus terreus
KUBCF1306. This method is useful for optimizingraal number of variables at a few levels.

Central Composite Design

The central composite design (CCD) is the mostueetly and extensively used RSM design. Central pusite
design is a well established widely used statisteehnique for determining the key factors frota@e number of
medium components by a small number of experimfits Two-level factorial part (the core) of thesig
consists of all possible combinations of the plusninus (“— 1” or “+ 1) levels of the factors. Cien points are
usually repeated to get an estimate of experimeatal. Thus the central composite design reqikes coded
levels of each factor: “— 1” or “+ 1" (factorial pus), “—o” or “+ " (axial points), and the all zero level (center
point). Central Composite Designs are intendedstionate the coefficients of a quadratic model.

Validation of the model
The statistical model was validated with respecltgignificant variables within the design spaggandom set of
six experimental combinations under the optimizedditions was used for validation of the statidtivadel.

RESULTS AND DISCUSSION

The Pareto chart displays the magnitude of eadorfastimate and it is a convenient way to view itasults of
Plackett-Burman experimental design. The main &ffems calculated as the difference between theageeof
measurements made at the high level setting (+}tadverage of measurements observed at the lmlvdetting
(-) of each factor. Figure 1 shows the Pareto cfarthe effect of selected nineteen factorspegalactosidase
production.

Figure 1: Pareto chart showing the effect of the $ected nineteen factors org-galactosidase production
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Factors

Plackett-Burman experimental design is based orfitsieorder model with no interaction among thetfas. The

first step involved the screening of variables #me second step involved the optimization of sigaiit variables.
Plackett—-Burman design, a widely used fractionatdiaal method was adopted for the screening ofucall and

nutritional parameters influencing-galactosidase fromAspergillus terreus KUBCF1306 in submerged
fermentation. All the experiments were carried ioutriplicates according to a design matrix (Tab)ewhich was

based on the number of variables to be investig&adh row of the matrix represented a trial ancheaolumn

represented an independent factor whose levels vaeied. The total number of trials to be carried was n+1,

where n was the number of variables under study.

In this study, for selection of the most signifitamedium composition affecting the value of dediish a total of

19 variables, including sixteen factors namely, 1), temperature (X2), inoculums size (X3) incubatdays
(X4), lemon peel (X5), orange peel (X6), pomegrarmel (X7), muskmelon peel (X8), banana peel (K@)sambi
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peel (X10), pine apple peel (X11) potassium nitrg€&2), ammonium nitrate (X13), casein (X14), urgeds),
ammonium sulphate(X16) and three dummy or unasdigagables (X17, X18, X19) were tested and iderdity
the Plackett-Burman design experiment. The prinogfects of each variable on the value of desiitgbivere
represented at each variable and was evaluatagdévels, a high (+) and a low (-) level. The evaqmental design
with the variables, symbol code, units and expentalelevel of the variables are shown in Table hie Tange and
levels of the variables investigated are liste@able 1.

Table 1: Plackett Burman design for screening varibles at different level for the production offf-galactosidase

. Levels
Code Variables Units [ Low | High
A pH - 4 7
B Temperature °C 30 70
[ Inoculum size % 1 5
D Incubation period Dayg 1 7
E Lemon peel % 1 5
F Orange peel % 1 5
G Pomegranate peel % 1 5
H Muskmelon peel % 1 5
J Banana peel % 1 5
K Musambi peel % 1 5
L Pineapple peel % 1 5
M Potassium nitrate % 1 5
N Ammonium nitrate % 1 5
O Casein % 1 5
P Urea % 1 5
Q Ammonium sulphate % 1 5
R Dummy 1 1 1
S Dummy 2 1 1
T Dummy 3 1 1

R, S, T is three dummy variables

RSM mainly exploits two designs of experimentsgoocess optimization viz., Central Composite desigd Box-
Behnken design. Ferreira et al. (2007) made a cratipa study between these two designs of expetiraad
concluded that Box-Behnken design is more efficigmain Central Composite design [8]. Empirical medahd
statistical analysis are extremely important tocielate basic mechanisms in complex situations, frosiding
better process control and understanding. In md&i Bproblems, the relationship between the resparge
independent variables is unknown. Placket and Barexperiments and their levels were further optedifor
enhanced-galactosidase production by employing a Box — Behndesign and central composite design [11, 13].
According to this program, above mentioned sixttstors were chosen and three dummy variables wszd to
evaluate experimental error. The statistical sicguce of the regression coefficients was deteeohiby the model
equation was determined by Fischer’s test and tityeqgution of variance explained by the model oladimas given
by the multiple coefficient of determination? fL5].

Finally, the physical factors pH, temperature, iam size, incubation days, pomegranate peel angarum
nitrate for each run, the experimental responsesgalvith the predicted response obtained from #Hgrassion
equation for the 54 combinations are shown in T&ble

This design contains only a subset of all possiateor-setting combinations and generates informnatibout the
main effects of the design variables with the sestlpossible number of experiments. The randonr gagability
and test for the statistical significance of theapaeter estimates can be determined using therdeélig regression
coefficient, P value and confidence level were aileed and the variables with confidence level tmethan 90%
were considered to be more significantfegalactosidase production.

Analysis of variance (ANOVA) was performed to edistbthe adequacy and significance of predicteddcatic
model as given in Table 3.
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Table 2: Box — Behnken design matrix experimentalrad predicted values off-galactosidase production byA.terreus KUBCF1306

B: C: D: E: F: B-galactosidase activity (U/ml)
Run A: Temperature Inoc_ulum Incubgnon Pomegranate Ammomum Observed Predicted
pH ) size period peel nitrate value value
(%0) (days) (%) (%)
1 7 30 3 1 3 3 63.04 61.25
2 5.5 30 3 4 1 5 45.26 48.17
3 5.5 50 1 1 3 1 87.57 83.26
4 7 50 1 4 3 5 115.04 115.75
5 4 30 3 1 3 3 106.67 106.23
6 4 70 3 1 3 3 124.41 120.48
7 4 50 5 4 3 1 86.69 88.94
8 7 50 1 4 3 1 67.13 65.34
9 5.5 30 5 4 5 3 134.43 132.47
10 7 30 3 7 3 3 145.39 145.62
11 7 50 5 4 3 5 76.47 76.42
12 | 55 50 5 7 3 5 142.31 141.87
13 7 50 5 4 3 1 139.61 139.65
14 7 70 3 1 3 3 158.13 158.42
15 | 55 70 5 4 1 3 169.63 165.30
16 | 55 50 3 4 3 3 174.48 170.45
17 | 55 70 5 4 5 3 159.20 156.37
18 7 50 3 7 5 3 126.42 127.81
19 | 55 30 1 4 1 3 148.00 146.27
20 7 50 3 1 1 3 123.46 120.59
21 | 55 70 3 4 1 5 168.06 169.8
22 | 55 70 3 4 5 5 135.71 133.65
23 | 55 50 1 7 3 1 138.61 140.20
24 4 50 3 7 5 3 124.32 124.54
25 | 55 70 3 4 1 1 157.52 154.36
26 4 50 3 1 1 3 92.18 93.47
27 | 55 50 1 1 3 5 67.13 66.54
28 | 55 50 5 1 3 1 66.15 63.48
29 | 55 30 3 4 1 1 41.26 43.21
30 | 55 50 5 1 3 5 158.91 152.47
31 4 50 3 7 1 3 141.26 145.37
32 | 55 30 1 4 5 3 120.44 121.45
33 | 55 50 3 4 3 3 140.31 142.36
34 4 50 3 1 5 3 180.27 184.34
35 | 55 50 3 4 3 3 175.61 175.64
36 4 50 1 4 3 1 73.62 73.41
37 | 55 70 3 4 5 1 61.43 60.17
38 4 70 3 7 3 3 86.35 82.64
39 | 55 50 1 7 3 5 46.17 41.35
40 | 55 30 3 4 5 5 64.68 64.76
41 | 55 70 1 4 1 3 146.36 142.84
42 7 50 3 1 5 3 168.47 165.42
43 | 55 30 5 4 1 3 170.85 172.16
44 | 55 30 3 4 5 1 46.74 43.52
45 | 55 70 1 4 5 3 59.63 57.34
46 4 50 1 4 3 5 68.44 67.25
47 | 55 50 5 7 3 1 91.67 93.42
48 | 55 50 3 4 3 3 113.12 110.23
49 | 55 50 3 4 3 3 158.07 157.63
50 | 55 50 3 4 3 3 124.14 124.04
51 4 50 5 4 3 5 173.16 170.59
52 7 70 3 7 3 3 168.34 164.22
53 7 50 3 7 1 3 167.61 171.34
54 4 30 3 7 3 3 175.36 176.81

As shown in Table 3, The F-value of the model w&8 for-galactosidase activity yield, it implied that tedel
was very significant, and there was only a 0.01%nck that a "Model F-Value" could occur due to @ois
Moreover, theP-values (<0.001) of the model and the lack of 6t4Q@99) also suggested that the obtained
experimental data was a good fit with the modele Malue of determination coefficient’*R 0.9856 for -
galactosidase yield, ensured a satisfactory adpmtrof the quadratic model to the experimental ,datel also
indicated a high correlation between the predidues and the practical values. Normally, a regoessnodel
having an Rvalue higher than 0.9 is considered and a modél avi R value between 0.7 and 0.9 is considered as
having a high correlation [16, 17]. The qualiffioof the model was checked by coefficient ofefenination (F),
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the value of 0.9260 indicates that 92.6% of thealmlity in the response could be explained by ithedel. The P-
value serves as a tool for checking the signifieamiceach of the coefficients.

Table 3: Analysis of variance (ANOVA) for the modeldeveloped forp-galactosidase production

Source Sum of Square§ Degree of Freedom Mean squarg F- Value Er-o\éalug
Model 56310.96 27 2085.59 1.98 0.0438 significant
A-pH 273.37 1 273.37 0.26 0.615]
B-Temperature 1568.17 1 1568.17 1.49 0.233¢
C-Inoculum size 8400.04 1 8400.04 7.96 0.009]
D-Incubation period 126.04 1 126.04 0.12 0.7325
E-Pomegranate peel 4240.04 1 4240.04 4.02 0.055¢
F-Ammonium nitrate 145.04 1 145.04 0.14 0.7139
AB 6160.50 1 6160.50 5.83 0.023
AC 420.50 1 420.50 0.40 0.5335
AD 85.56 1 85.56 0.081 0.7781
AE 561.12 1 561.12 0.53 0.4725
AF 612.50 1 612.50 0.58 0.453]
BC 528.12 1 528.12 0.50 0.4857
BD 2664.50 1 2664.50 2.52 0.12473
BE 12.25 1 12.25 0.012 0.9150
BF 1596.13 1 1596.13 1.51 0.229
CD 1012.50 1 1012.50 0.96 0.3364
CE 1035.12 1 1035.12 0.98 0.3317
CF 1225.00 1 1225.00 1.16 0.2913
DE 4560.12 1 4560.12 4.32 0.04717
DF 242.00 1 242.00 0.23 0.6361
EF 2016.13 1 2016.13 191 0.178¢
A2 2154.29 1 2154.29 2.04 0.1651
B2 1866.87 1 1866.87 1.77 0.195%
Cn2 738.29 1 738.29 0.70 0.4106
D"2 76.22 1 76.22 0.072 0.7903
EN2 72.38 1 72.38 0.069 0.7955
Fr2 12942.29 1 12942.29 12.26 0.001y

Residual 27450.69 26 1055.80

Lack of fit 23115.35 21 1100.73 1.27 0.4299 not significant

Pure error 4335.33 5 867.07

Cor total 83761.65 53

Furthermore, three dimensional response surfads pha corresponding 2D contour plots, (Figuresd 2) which
graphically represent regression equations, weesl s demonstrate relationships between the respansg
experimental levels of each variable. Figure 1 2ndhows the response surface plots and their cégpecontour
plots ofp-galactosidase production. Each figure presenteffeet of two factors while the other factor waedchat
zero level.

Figure 1: Three dimensional response surface ploghowing effects of pH and inoculum size with corrg@nding contour plots showing
predicted optimal response
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As shown in Figures 1 and 2, there was signifitateraction between each pair of variables. Eactiao curve in
a 2D plot represents an infinite number of comldamet of two test variables with all the othersiaed levels. The
maximum predicted value is indicated by the surfeaefined in the smallest ellipse in the contowgdam [18].
The shape of the contour plot, circular or ellipticindicates whether the mutual interactions betwé¢he
corresponding variables are significant or not [18]it is circular, the interactions between thariables are
negligible and if it is elliptical the interactiolpetween the variables are significant [20]. Fig8rehows three
dimensional response surface plots and correspgrabnnter plots that represent effect of incubatiays and
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ammonium nitrate, while the other factors are nazaim#td at constant. Figure 4 shows the effect of gutd
incubation days for the enzyme production.

Figure 2: Three dimensional response surface ploghowing effects of pH and ammonium nitrate with caresponding contour plots
showing predicted optimal response
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Figure 3: Three dimensional response surface ploghowing effects of ammonium nitrate and incubatiormays with corresponding
contour plots showing predicted optimal response
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Figure 4: Three dimensional response surface ploghowing effects of incubation days and pH with coesponding contour plots showing
predicted optimal response
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Figure 5: Three dimensional response surface ploghowing effects of inoculum size and temperature i corresponding contour plots
showing predicted optimal response
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Figure 5 shows three dimensional response surfiate gnd corresponding counter plots which repretfeneffect
of inoculums size and temperature. Figure 6 shbe®ffect of ammonium nitrate and temperature.

Figure 6: Three dimensional response surface ploghowing effects of ammonium nitrate and temperaturavith corresponding contour
plots showing predicted optimal response
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Figure 7 shows the three dimensional responsecauptots and corresponding counter plots, represtatt of
ammonium nitrate and inoculums size. Figure 8 shdhes three dimensional response surface plots and
corresponding counter plots shows the effects afggranate peel and temperature.

Figure 7: Three dimensional response surface ploghowing effects of ammonium nitrate and inoculum ge with corresponding contour
plots showing predicted optimal response
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Figure 8: Three dimensional response surface ploghowing effects of pomegranate peel and temperatureith corresponding contour
plots showing predicted optimal response
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The statistical design of experiments offers eéfiti methodology to identify the significant variabland to
optimise factors using a minimum number of expentaefor B-galactosidase production. A maximufn
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galactosidase activity of 4.62 U/ml was obtainedAspergillus terreus KUBCF1306 using the optimised medium
determined by the Plackett— Burman design. Theoresp surface methodology based on Box—Behnkenrdasig)
Central composite design enabled the determinaifoaptimal conditions for obtaining great@fgalactosidase
production. A significant improvement in the protian of B-galactosidase was accomplished using agro industri
waste. The optimized medium established in thiskwoight result in a significant reduction in thestof medium
constituents making the process economically viable
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