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ABSTRACT 
 
As the fundamental structure theorem of infinite exchangeable random variables sequences, the Definetti’s theorem 
does not work to finite exchangeable random variables sequences, it is therefore necessary to find other techniques 
to solve the approximate behavior problems of finite exchangeable random variables sequences. By using reverse 
martingale approach, some scholars have given some results. In this paper we do some researches about the 
similarity and difference of identically distributed random variables and exchangeable random variables sequences, 
mainly discuss the limit theory of exchangeable random variables. 
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INTRODUCTION 
 

Limit theory mainly study independent random variables, but in many practical problems, samples are not 
independent, or the function of independent sample is not independent, or the verification of independence is more 
difficult. So the concept of dependent random variables in probability and statistics is mentioned. Exchangeable 
random variables are major type of dependent random variables. If the replacement the joint distribution of

1 2, , , nX X X is unchanged, that is, for each replacement of 1, 2, , n the joint distribution of 1 2, , , nX X X is 

the same with that of ( ) ( ) ( )1 2, , , nX X Xπ π π ; then the random variable finite series 1 2, , , nX X X is known as the 

exchangeable. Obviously, the independent identical distribution random variables are the simplest exchangeable 
random variables. The concept of exchangeable random variables is the first proposed by De Finetti 1930.The most 
famous property of exchangeable random variables is its basic structured theorem, called De Finetti theorem; that is, 
the infinite series of exchangeable random variables is independent identical distribution, if its tail is σ algebra. 
Some scholars have given some results about exchangeable random variables sequences ([1]-[5]).The aim of this 
paper is generalize the independent identical distribution variables [6] and[7] to the exchangeable random variables. 
As the selection method for truncated random variables is different when deal with random variables, so the prove 
method is more simple than that of [6] and [7]. 

 
THEDEFINITION AND THE LEMMA 
Definition [8]. The positive valued function ( )l x  defined on[ )0,∞ is called slowly changed, if for any 0c > ,we 

have ( )
( )

lim 1
x

l cx
l x→∞

= Suppose{ },1 , 1nia i n n≤ ≤ ≥ is real positive series that satisfy 1
, 1

n
n nii

A n a
a

a
a

−
=

= ∑ and 

1
, 1

n
n nii

A n a
a

a
a

−
=

= ∑                                                                         
(1) 

Lemma [8]. Suppose{ }, 1nX n ≥ are exchangeable random variables, which satisfy ( ) ( )( )1 1 2 2, 0Cov f X f X ≤  
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Let 1 2, , mA A A be the disjoint non-empty subset of { }1,2, , n with 2,m ≥ suppose , 1, 2, ,if i m=  is a 
non-increase 
 
(Non-decrease) function, then 

(1)If 0, 1, 2, ,if i m≥ =  then ( ) ( )
1 1

, ,
n n

i j i i j i
i i

E f X j A Ef X j A
= =

 
∈ ≤ ∈ 

 
∏ ∏  

(2)Particularly, for any , 1, 2, , ,ix R i m∈ =  we have ( ) ( )1 1
1

,
n

m m i i
i

P X x X x P X x
=

< < ≤ <∏  

Subsequently, we will outline several lemmas, which will be used in the proof of the main theorems. If necessary, 
we will also give the proof. 
 
Lemma2 Suppose 1 2, , , nX X X are exchangeable random variables, that satisfy ( ) ( )( )1 1 2 2, 0Cov f X f X ≤  

0kEX = , ( )2 2 1, 2, ,k kEX k nσ = < ∞ =  , Suppose there exists a positive constant H such that 

( )2 2! 1, 2, ,
2

m m
k k

mEX H k nσ −≤ ⋅ =   

then we have 2 2

1 1
exp 4 ,

n n

i i
i i

P X x x σ
= =

   ≥ ≤ −   
   
∑ ∑ 2

1
0

n

i
i

x Hσ
=

≤ ≤∑  

2 2

1 1
exp 4 ,

n n

i i
i i

P X x x σ
= =

   ≤ − ≤ −   
   
∑ ∑ 2

1
0

n

i
i

x Hσ
=

≤ ≤∑  

 
Proof. Based on Theorem 2.5 in[9] and Lemma 1 in [7], this Lemma is easy to prove. 
 
Lemma 3. Suppose{ }, ; 1nX X n ≥ are the exchangeable random variables and there exist 

0, 0h r> > , such that ( )( )exp rE h x  < ∞
 

(2){ },1 , 1niX i n n≤ ≤ ≥ are the exchangeable random variables that 

satisfy ( ) ( )( )1 1 2 2, 0n nCov f X f X ≤  

0,niEX = { },1 , 1nia i n n≤ ≤ ≥ are real constant array that satisfy 

( )i There exist ,0 rβ β< ≤ with lim 0nn
u

→∞
=  and{ }, 1nu n ≥ , such that . .

log
n i

ni ni

u X
a X a s

n

β

≤  

( )ii There exists 0δ >  and array{ }, 1nv n ≥ , that satisfy lim 0nn
v

→∞
= , 2 2

1
. .

log
n n i

ni nii

v X
X a a s

n

δ

=
≤∑  

 
Proof. Based on Theorem 2.5 in [9]and Theorem 18 in[10], the lemma is easy to prove 
 
Lemma 4. Suppose{ }, ; 1nX X n ≥ are the exchangeable random variables and there exist 

0,h > 0r > , such that ( )( )exp rE h x  < ∞
 

 

{ },1 , 1niX i n n≤ ≤ ≥ are the exchangeable random variables that satisfy 

( ) ( )( )1 1 2 2ov , 0n nC f X f X ≤  

0,niEX = 1 , 1,i n n≤ ≤ ≥ { },1 , 1nia i n n≤ ≤ ≥ are real constant array that satisfy 

(1) ( )( )exp rE h x  < ∞
 

 

(2) ,0 rβ β< ≤ and constant c>0 ,such that
log

i
ni ni

c X
a X

n

β

≤ . .a s  
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(3) There exists 0δ > and array{ }, 1n nυ ≥ , lim 0nn
v

→∞
= , such that 2 2

1 log
n n i

ni nii

v X
X a

n

δ

=
≤∑ . .a s  

then
1

0
n

ni i
i

a X
=

→∑ . .a s n →∞  

 
THEMAIN RESULTS AND PROOF 
Theorem 1. Suppose{ }, ; 1nX X n ≥  are the exchangeable random variables that satisfy ( ) ( )( )1 1 2 2, 0Cov f X f X ≤  

Suppose ,if 1,2i = are functions satisfy the above rule and non-decrease with 1 2,X X , 1 0,EX = 1,pa > ( ) 0l x >  is 

monotonous non-decrease function when x →+∞ ,{ },1 , 1nia i n n≤ ≤ ≥  are real constant array with,

1
, 1

n
n nii

A n a
a

a
a

−
=

= ∑ ,Further, suppose lim sup , ,
n

A A na a→∞
= < ∞ ,E X β < ∞ 0EX =  

and1 , ,1 2,pa β< < ∞ < < 且 1 1 1
p a β
= + ,then 

1
1

1 n

ni ip
i

a X
n =

→∞∑ . .a s ( )n →∞                                                                 
(3) 

 
Proof. Without loss of generality, for any1 , 1i n n≤ ≤ ≥ , suppose 0nia > , as{ }, ; 1nX X n ≥  are the 

exchangeable random variables, and 1 1 2 2, , ,n n nn na X a X a X  also satisfy 

( ) ( )( )1 1 1 2 2 2, 0n nCov f a X f a X ≤  

and
1 1 1
p a β
= + ,Then 2p a β< ∧ ∧ . from (1) we have 

2 2
21 2

1 1

n n
p p

ni i ni
i i

E n a X Cn a E X
a β a β

a βa β
∧ ∧ ∧ ∧

∧ ∧− − ∧ ∧

= =

≤∑ ∑ 2 1 2
2, 0,p

nCn A na β a β
a β

− ∧ ∧ + ∧ ∧
∧ ∧≤ → →∞  

then 1

1
0

n p
p

ni i
i

n a X−

=

→∑ n →∞  

 
From the symmetrized inequality proved in Lemma 14 in [10], we know that, in order to prove

1

1
0,

n p
p

ni i
i

n a X n−

=

→ →∞∑ , we just need to prove           

1

1 0S
ni ip a X

n
→ . .a s n →∞  

 
where S

iX  is the symmetrized form of nX ,From Lemma 3 in [11], we have the symmetrized series of 

( ) ( )( )1 1 2 2, 0Cov f X f X ≤  
 
also satisfy the inequality, i.e. ( ) ( )( )11 2 2, 0S SCov f X f X ≤ ,Without loss of generality, we assume that{ }, 1nX n ≥  are 

the symmetrized exchangeable random variables that satisfy ( ) ( )( )1 1 2 2, 0Cov f X f X ≤  for all1 ,i n≤ ≤

1n ≥ ,Letting 

( ) ( ) ( )1 1 1 1 1
i i i i iX X I X n n I X n n I X nβ β β β β′ = ≤ + > − < −

( ) ( ) ( )1 1 1 1 1
i i i i iX X I X n n I X n n I X nβ β β β β′′= > − > + < −  

( )1
i i iX X I X n β′′= >  
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( )1
ni ni nia a I a n a′ = ≤  

( )1
ni ni ni ni nia a a a I a n a′′ ′= − = >  

then 

1 1 1 1

n n n n

ni i ni i ni i ni i
i i i i

a X a X a X a X
= = = =

′ ′ ′′ ′ ′′= + +∑ ∑ ∑ ∑                                                    (4) 

As
1 1 1
p a β
= + , 11 1 ,

1 p
aβ β

a
  

= + −  −   

( ) ( )1 1 1 p
i iX X n

β a a− − −′′ ′′≤  

and E X β < ∞  which is equivalent to ( )1n
P X nβ∞

=
> < ∞∑ ,then ( )1 nn

P X nβ∞

=
> < ∞∑ , 

 
From Borel-Cantelli Lemma, we have ( ), . . 0nP X n i oβ > = 。hence 

1

1 0
n

i
i

X
n

β

=

′′ →∑ . .a s ( )n →∞  

 

From Holder  inequality, '' ''
i iX X≤ 及

( ) ( )1 1 1 p
i iX X n

β a a− − −′′ ′′≤ ⋅ and 

1

1 0
n

i
i

X
n

β

=

′′ →∑ . .a s ( )n →∞  

then 
( )1

1 1 1

1 1 1

n n n
p p

ni i ni i ni i
i i i

n a X n a X n a X
β a a−

− − −

= = =

′′ ′′ ′′≤ ≤∑ ∑ ∑  

( )1

,
1

1 0
n

n i
i

A X
n

a aβ

a

−

=

 
′′≤ →  

 
∑ . .a s ( )n →∞  

Therefore, we have 

1

1
0

n
p

ni i
i

n a X−

=

′′→∑ . .a s ( )n →∞                                                             (5) 

As
1 1 1 ,
p a β
= + 1a β∨ < ,then 

( ) ( ) 2 12 2
1

1 1

if

if

a βa β
a β

a β
a β

+ +  ∧ <− −  ∧+ + = 
 ∧ ≥

 

 

Therefore, we have ( ) ( ) ( ) { }( )
2

22 22 2 2
2, 2

1
max , ,

n

ni i n
i

E a X CnA n X O n n nβa a β βa a β
a β

+ + ∧− + −∧
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=

′ ′ ≤ ⋅ =∑  

Moreover, for any1 , 1i n n≤ ≤ ≥ ,we have 1 1 1 1 1p p
ni in a X n n na β− −′ ′ ≤ = ,and 

{ } ( )2 2 2 2max , , logpn n n O n na β −= , From 

 
Lemma 2, for sucient small " and sucient large n, we have 

{ }( )
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1
2 2 2

1
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4 max , ,

n
p

ni i p
i

P n a X
n O n n na β

ee
−

=
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∑ ( )( )22exp log ne≤ −  
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By the same procedures, we can also prove that ( )( )21 2

1
exp log

n
p

ni i
i

P n a X ne e−

=

 ′ ′ < − ≤ − 
 

∑ , 

So 1

1 1

n n
p

ni i
i i

P n a X e−

= =

 ′ ′ > < ∞ 
 

∑ ∑ 。then 

1

1
0

n
p

ni i
i

n a X−

=

′ ′→∑ . .a s ( )n →∞                                                             (6) 

For 1 1 1
p a β
= + , we have ( )1 1 1 1

1 1

n n
p p

ni i ni ni
i i

n a X n n a I a nβ a− −

= =

′′ ′ ≤ >∑ ∑  

( )11 1
,

1

n
p

ni n
i

n n a Aaa aβ a
a

−− +

=

≤ =∑                                                              (7) 

Then from (4),(5),(6),(7), we have 

1

1
limsup

n
p

ni i
n i

n a X Aa
a

−

→∞ =

≤∑ . .a s ( )n →∞  

By replacing iX  with itX  we have 

1

1
limsup

n
p

ni i
n i

An a X
t

a
a−

→∞ =

≤∑ . .a s ( )n →∞  

Let t →∞ ,we have 

1
1

1 n

ni ip
i

a X
n =

→∞∑ . .a s ( )n →∞  

the inequality (3) is true. 
 

CONCLUSION 
 

As the fundamental structure theorem of infinite exchangeable random variables sequences, the Definetti’s theorem 
states that infinite exchangeable random variables sequences is independent and identically distributed with the 
condition of the tail σ-algebra. So some results about independent identically distributed random variables is similar 
to exchangeable random variables. As the fundamental structure theorem of infinite exchangeable random variables 
sequences, the Definetti’s theorem does not work to finite exchangeable random variables sequences, it is therefore 
necessary to find other techniques to solve the approximate behavior problems of finite exchangeable random variables 
sequences. By using reverse martingale approach, some scholars have given some results. In this paper we do some 
researches about the similarity and difference of identically distributed random variables and exchangeable random 
variables sequences, mainly discuss the limit theory of exchangeable random variables. 
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