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ABSTRACT 
 
In this paper, concepts for adapting the IPFIX protocol to the needs of wireless sensor networks have been 
investigated, resulting in the development of the protocol TinyIPFIX, which is an adaptation of the IP Flow 
Information Export (IPFIX) protocol. The new protocol has been assessed in a representative use case involving a 
building application. TinyIPFIX has been extended by compression capabilities and by aggregation functionality. 
Furthermore, extensions to support secure data transmission have been developed, using the protocol Datagram 
Transport Layer Security (DTLS). This solution ensures that data collected by sensor nodes is transmitted via secure 
channels to a global data sink, and that authorized access is ensured from a data sink to a wireless sensor network. 
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INTRODUCTION 

 
As previously mentioned, it is required to integrate wireless sensor networks into the Internet of Things. It is 
assumed that sensor devices have enough resources to support IP communication. An overview of IP solutions for 
sensor devices is presented, e.g. ZigBee, IPv6 over Low power Wireless Personal Area Network (6LoWPAN), and 
the Berkeley Low-power IP stack (BLIP) representing the underlying stack. Due to the limited resources of sensor 
hardware, especially energy, memory, and computational capacity, supported solutions must be developed in a 
resource efficient way. 
 
In order to support interoperability of protocols and heterogeneity in the hardware, the developed solutions must be 
flexible and independent of the underlying stack (e.g. 6LoWPAN, BLIP), which is responsible for the network and 
transport functionalities. As a consequence the integration of protocols and algorithms on the application layer with 
focus on standardization is preferred as solution. The application layer is located separately above a complex (called 
network stack) that includes all underlying layers (e.g. transport, network, physical). The protocols and algorithms in 
the application layer communicate with the underlying layers via interfaces. For example, if a protocol using 
6LoWPAN on the underlying layer is developed and ZigBee is now exchanged by BLIP, it is only required to 
modify the interfaces between the application layer and the underlying stack but not the application itself. Instead of 
developing new isolated solutions, this dissertation focuses on the analysis of existing standards, for example of IP 
networks, and the possibility for application and protocol transfer to constrained hardware, such as sensor nodes, and 
transfers advantageous characteristics (e.g. message format, energy efficiency) into one combined protocol - 
TinyIPFIX and its extensions. 

 
RELATED WORK 
In general, a wireless sensor network consists of different sensor nodes (white) from different vendors which collect 
individual data and transport it to one or more sink(s) (black) as illustrated in Figure 1. The number of participating 
nodes depends on the network size and may cause a long communication link to the sink with several hops in between. 
Depending on the placement of the sensor nodes, some nodes are not able to communicate with the sink directly. To 
overcome this, the network must support routing functionality in order to route data packets to the sink in an efficient 
way. Therefore, the routing algorithms take the current network status into account in order to be able to calculate the 
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optimal route towards the sink. For example, depending on the location of sensor node A it would be expected that the 
routing algorithm would prefer to forward the collected data to sink 2 and further to the global data sink. Instead, the 
underlying routing algorithm (e.g. BLIP) decides to route the data over five hops to sink 1 using direct addressing of 
the sink by its individual IP address. From sink 1 the data is forwarded using LAN connections to the global data sink. 
In both cases the data would arrive the global data sink but the required time might be different [1]. 
 
The sink is a sensor node with gateway functionality (e.g. IP Basestation1). It forwards the wireless received data to a 
wired infrastructure, such as a server or PC, which is responsible for the further handling of the data (e.g. 
interpretation and analysis of the data, forwarding to the global data sink). The terms sink and base station are 
equivalents and together with a server connection a gateway is formed. Various functions are performed on the server 
such as data storage, data pre-processing, visualization or node configuration. In general, the gateway has a 
connection to other components of the cyber-physical system and provides the collected data to the components for 
different application purposes (e.g. online analysis, entity management).  
 

 
 

Figure 1.  General illustration of a wireless sensor network 
 
The research questions answered in this dissertation focus on efficient data transmission in wireless sensor networks 
with support of a security solution. Security considerations are required, because of the integration of wireless sensor 
networks into the Internet of Things and because of the connection between data and personal/sensible information 
(e.g. GPS). In order to develop a resource efficient solution the requirements of wireless sensor networks are kept in 
mind. The developed solution should support different hardware platforms and allow integration of new features into 
a modular architecture. This dissertation deals with the following research questions in the field of efficient data 
transmission:  
(E1): Is the IP Flow Information Export (IPFIX) protocol a viable solution for transmission of sensor data in wireless 
sensor networks? 
(E2): Is it possible to combine data pre-processing techniques (e.g. aggregation) with the IPFIX protocol within the 
network? 
(E3): Can all sensor platforms perform TinyIPFIX and its extensions (compression, aggregation), as well as 
TinyDTLS? 
 
Due to the integration of wireless sensor networks into the Internet of Things and the relation between data and 
private/sensible information a secure data transmission is very important. Today, applications of wireless sensor 
networks prefer to use the unreliable User Datagram Protocol (UDP) instead of the reliable Transmission Control 
Protocol (TCP). As described by Wagenknecht et al., deployed wireless sensor networks use UDP for data 
transmission towards a sink and TCP is used for administrative functions (e.g. node configuration). If TCP would be 
used, the standard TLS protocol could be used. It requires that both communication endpoints support the same 
network layer. Another problem for using TLS over UDP is the missing authentication of packets if packet loss 
occurs which is possible when UDP is used. 
 
In order to support secure data transmission between participating sensor nodes, this dissertation deals with the 
following research questions in the field of security: 
(S1) Is it possible to secure data transmission in wireless sensor networks with known standards from IP networks? 
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(S2) Can DTLS be performed on severely resource constrained hardware as used in wireless sensor networks? 
 

DESIGN PRINCIPLES  
The operators of wireless sensor network set a high standard to good support of quality of service, energy efficiency, 
and scalability of the performed functionalities. In order to accomplish the operators’ requests, design principles are 
important as described by S. Fouladgar et al. in reference [2]. The design principles introduced below, are differently 
weighted according to the chosen application scenario, the performed functionalities, the network size, and the 
resources of the hardware used. 
 
Hardware Specification of Sensor Devices 
The standard equipment of a sensor node consists of a microcontroller, a memory unit, a communication device 
(radio), a power supply, and one or more sensors or actuators. Depending on the hardware design other components 
might be included such as LEDs, power switches, external power connectors, external RF connectors or expansion 
connectors. The main task of sensor nodes is to collect data and forward it. Depending on the application some sensor 
nodes can perform additional tasks, such as packet aggregation or data pre-processing, within the wireless sensor 
network.  
 
The most relevant component of a sensor node is the microcontroller. It has several responsibilities such as data 
collection from sensors or actuators, data processing, decision management, and flow control. The memory is 
subdivided into a random access memory (RAM) and the read-only memory (ROM), which is sometimes an 
electrically erasable programmable ROM (EEPROM) or a flash memory. In contrast to ROM, RAM looses its content 
by power loss. Thus, it is used for buffering purposes, especially for data that can be changed while a program runs. 
The executing code is stored in the ROM in order to avoid reprogramming after power loss. The node, therefore, must 
only be programmed once and can be reused several times until a code update is required. 
 
The communication device is responsible for the communication ability of the sensor node as described in detail in 
reference [3]. Depending on the application scenario the number of sensors and actuators differ. The power supply 
must be dimensioned according to the hardware, the application scenario, and the targeted lifetime of the system. 
 
Energy Saving Methods 
Usually, the most energy consuming procedure is the transmission of data to the next hop towards a sink followed by 
decoding and processing operations directly on the node. In order to ensure a longer lifetime of the wireless sensor 
network energy saving techniques should be integrated into the system.  
 
One idea is to reduce energy consumption by implementing different modes of activity for the nodes as described in 
reference [4]: full active, idle, and sleep. Most power is consumed when the node is fully active, which means 
everything requires full power for listening, sending, and data collecting. Sensor nodes in the sleep mode consume 
very little energy-microjoule instead of millijoule [5]. Normally, nodes are programmed with internal clocks that 
wake them up in predefined intervals in order to perform, e.g. data collection followed by sending data directly to the 
next hop afterwards, before they fall into sleep mode again. The idle mode is a mode in between those two modes. 
Here the node actively listens to the surrounding traffic for beacons that let it know when to wake up and when to 
perform operations.  
 
Another idea to reduce energy consumption is software based and focuses on message size and network traffic. It has 
been proven that messages with smaller size consume less transmission energy than bigger messages [6]. Therefore, 
one strategy is the reduction of overhead. In the context of sensor networks overhead is the meta information 
connected to each measurement, which is anytime the same for the same sensor node. Thus, splitting of sensor data 
packages into a message that includes meta information, and a message with the measured values is the strategy of 
choice. The message including meta information is sent out to all network components when the sensor node boots. 
After this announcement the sensor node only transmits messages, including the measured data, and refers to the 
before announced meta information. Also, each packet should produce low overhead in order to offer more space for 
individual payload, including relevant data. This approach can be realized by performing compression techniques on 
the messages components (e.g. headers). Another strategy is the reduction of traffic within the network itself in order 
to save energy. In this case either message aggregation or pre-processing of data can be performed on nodes within 
the network. The simple idea behind this approach is that sometimes not all data is required in order to perform a 
specific action. For example, only the average room temperature is required to manage the cooling system in a room. 
A complete different method to raise the system’s life time is to charge the power resources by using solar panels or 
environmental inputs such as vibration or temperature. 
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OPERATING SYSTEM FOR SENSOR DEVICES 
Today the operating systems TinyOS and Contiki are very popular for wireless sensor networks which are briefly 
characterized in Section 2. A few years ago researchers started to develop new operating systems based on Unix (e.g. 
MantisOS, LiteOS), but those approaches are not as popular as TinyOS and Contiki and do not support the hardware. 
Thus, they are not addressed in this section. Finally, a brief look on code porting possibility between TinyOS and 
Contiki is presented, which is driven by industry partners and the ongoing development in the Internet of Things [7]. 
 
Characteristics of TinyOS 
TinyOS is a research driven operating system, which is used for hardware with limited resources such as Berkeley 
Motes (e.g. MICA2, MICA2dot, IRIS, TelosB) that are used in the deployed wireless sensor network in this 
dissertation and were introduced in Section 2.  TinyOS is an open source project.  It was developed by David Culler 
and Jason Hill at the University of California, Berkeley, USA in 2000 especially for wireless sensor networks based 
on the requirements of Berkeley Motes. TinyOS is a component-based operating system and has an efficient multi-
threading engine, which is composed of a two-level-scheduler and realizes the computer-time-spreading for threads. 
The application code consists of a Makefile including compiling commands, module files including configuration 
information, and one or more configuration files including the required information of the interfaces used and the 
component wiring [8]. The following two sources of concurrency are necessary prerequisites in order to understand 
the execution order of the two-level-scheduler in TinyOS: 
 
Tasks, which contain current network routing and data preparation, typically take longer to finish, because hardware 
events have higher priority.  
 
Events on the other hand must be handled immediately, so that long duration blockades caused by current 
applications and data loss are prevented. 
 
Characteristics of Contiki  
In contrast to TinyOS the operating system Contiki is an industry driven operating system.  In 2004 the development 
of Contiki by Adam Dunkels at the Swedish Institute of Computer Science was driven by the request of a light weight 
operating system (2 kB RAM and 40 kB ROM) for embedded systems that later on was adjusted to the requirements 
of wireless sensor networks.  The technical term embedded system summarizes small and limited hardware that is 
included in big systems (e.g. control system in a washing machine). Those embedded systems must function despite 
limited storage and computational capacities in the same way as components of a wireless sensor network. A 
representative for Contiki usage is the ScatterWeb project. 
 
The most important advantage of Contiki in comparison to TinyOS is the IP-communication (IPv6, IPv4), which is 
supported from the beginning. In Contiki the storage allocation happens during compiling. In contrast, the storage 
allocation for TinyOS is specified by the programmer, which means it is hard coded. A Contiki system consists of the 
kernel, the libraries, the program loader, and a set of processes, which can be an application or a service. The 
difference between an application and a service lies in the flexibility of the adaptations. In general, a service is 
programmed in a highly flexible manner so that different programs or applications can use it. In contrast the 
application is only developed for one special goal, e.g. health or building monitoring. In order to be flexible, Contiki 
supports different hardware such as Tmote Sky, JCreate, TelosB,MicaZ, Scatterweb plattforms MSB and ESB [9]. 
The programming language is Java. The process and the drivers can be replaced without interrupting a running 
system. If the processes need to communicate with each other they go through the kernel and communicate directly 
with the required hardware. The kernel itself is only responsible for event handling and outsources the remaining 
tasks to libraries that are linked if needed. In comparison to TinyOS the program code of Contiki consolidates all 
relevant packet imports and the application code itself in one file.  
 
TinyOS code porting Contiki 
In research TinyOS is the operating system of choice. The big advantages are the modular structure, the ongoing 
development, and the established community. A disadvantage is the fact that TinyOS requires special hardware such 
as Berkeley Motes that narrows the application field. But if an implementation runs under TinyOS with little 
complexity, the code and hardware can be transferred to Contiki. In order to realize the code porting, developed 
modules under TinyOS need to be subdivided into application and service processes in Contiki. The underlying 
wiring of components in TinyOS needs to be replaced by services interfaces in Contiki. If the code of TinyOS is 
adapted to the code requirements of Contiki, everything runs under the other operating system. For example, the 
TelosB nodes represent a platform, which can be programmed with TinyOS and Contiki, if the required drivers are 
supported. 
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IMPLEMENTATION  
As shown in Section 4 the application area of wireless sensor networks is manifold but the main tasks - collecting data 
and transporting it to a sink - are the same; the intermediate operations and protocols can vary. A home monitoring 
scenario was chosen to validate the TinyIPFIX protocol and its extensions. The implemented protocols - TinyIPFIX 
and its extentions - are flexible in order to support different applications and hardware vendors at the same time, as 
mentioned in Section 4. They currently require the operating system TinyOS 2.x. Protocols and functionalities (e.g. 
UDP-Shell, certificate creation) can be ported to another operating system (e.g. Contiki) with little changes as well as 
used with other hardware. Throughout the wireless sensor network experiments in this dissertation the operating 
system TinyOS 2.1.1 with BLIP support is used as the operating system of choice together with Berkeley Motes IRIS 
and TelosB, which support IEEE 802.15.4/ZigBee and work on the 2.4 GHz band. For the IRIS platform two different 
sensor boards are available. The MTS400 has either a temperature and humidity sensor combined or a barometric 
pressure combined with a temperature sensor on board as well as a light sensor and voltage. GPS is optional and 
included in MTS420. The MTS300 includes sensors for light, temperature, and acoustic together with an acoustic 
actuator. Due to the physical positioning of the sensors on the board MTS300, it is not allowed to activate the 
temperature and light sensor at the same time, because the activation can damage both sensors. If an application uses 
the MTS300, either the 3-tuple temperature sensor, acoustic sensor and acoustic actuator are activated or the 3-tuple 
light sensor, acoustic sensor and acoustic actuator. This fact must be taken into account when deploying the wireless 
sensor network. For technical details it is referred to the MTS/MDA Sensor Board Users Manual from Crossbow Inc.  
 
The TelosB node produced by the company Advantic is a MTM-CM5000-MSP sensor node with an external antenna 
including on board sensors for temperature, voltage, and humidity. The TelosB platform is also offered by Crossbow 
Inc., but not used here to prove the protocol’s support in a wireless sensor network consisting of different vendors’ 
hardware. In addition, TelosB nodes produced by Advantic include an antenna with a better radio range compared to 
TelosB node producedby Crossbow Inc., which doubles the radio range to 300 m outdoors and 40-50 m indoors. 
 

 
Figure 2.  AutHoNe setup: simplified TinyIPFIX message structure 

 
The assumed basic scenario for the implementation description is illustrated in Figure 2. The left part of the figure 
shows a building scenario, as assumed in the AutHoNe project, consisting of three rooms where sensor nodes are 
deployed. Here sensor nodes (marked white) are only data collectors and aggregator nodes (marked grey) forward 
received individual messages without modification towards the sink (node ID 0). The functionality of intermediary 
nodes (marked grey) can differ depending on their performed protocols (e.g. message/data aggregation). After 
collected data is received at the sink, the data is forwarded to the server. The server includes the required 
infrastructure in order to translate the received data by using XML-based meta data. The translated data is further 
forwarded to applications, such as the Knowledge Agents as part of the AutHoNe infrastructure, in order to make 
the collected sensor data available for management units (e.g. Autonomic Manager to coordinate functionality of 
lightning or heating control). The above described wireless sensor network consists of various hardware from 
different vendors in order to proof the flexibility of the developed protocols independent of the application scenario 
in this dissertation. Therefore, protocols used must allow integration of new vendors or setups (e.g. other sensor 
tuples) with a minimum of manual configuration. The established wireless sensor network uses IPv6 for 
communication purposes, because it was decided that BLIP is the IP communication support of choice for the 
experiments in this dissertation, which is included in the operation system TinyOS 2.1.1 as an existing 
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implementation. Today, in the Internet of Things it is assumed that networks use IPv6 instead of IPv4, where 
different arguments exist for this decision such as extended address space. If IPv4 is required on the server side, a 
parser must be integrated on the server for translation purposes. In the presented wireless sensor network 
experiments UDP is chosen as the transport protocol of choice, because todays’ available wireless sensor network 
deployments prefer to use UDP. 
 
Data transmission could include several Data Records, because the maximum pay load size of 102 bytes is not 
scooped. Assuming the additional Data Records refer to the equal Template, three additional Data Records would fit 
into the message. With the underlying BLIP stack the maximum IPFIX payload size can be expanded up to 1,024 
bytes, because BLIP supports packet fragmentation. Recorded payload of the template transmission (marked red 
dashed) shown in Figure 3 is 39 bytes long and can be decoded as follows: 
 
{04 27 16} ---> TinyIPFIX header in aggressive compression format whereas {27} indicates a total TinyIPFIX 
payload of size 39 bytes. 
{01 00} ---> Set ID (here: 256) 
{00 04} ---> Number of Template Fields (here: 4) 
{80 a0 00 02 f0 aa 00 aa}--->Template Fields for Temperature value which include the following information: 
{80 a0} ---> Type ID 
{00 02} ---> Data Length ID in bytes 
{f0 aa 00 aa} ---> Enterprise ID (here: 403767130) 
{80 a1 00 02 f0 aa 00 aa} ---> Template Fields for Sound value 
{80 a4 00 04 f0 aa 00 aa} ---> Template Fields for Node Time 
{80 a5 00 02 f0 aa 00 aa} ---> Template Fields for Node ID 
 

 
 

Figure 3.  Wireless sensor network special case 
 

CONCLUSION 
 
In this paper, sensor data (e.g. temperature, brightness, acoustic, humidity) is sent to a gateway, which offers different 
possibilities for analysis in order to manage the environmental conditions of the building based on the habitants’ 
preferences. The analysis’ result can either be directly applied to different entities controlling automatic systems such 
as those developed for the AutHoNe project. Another possibility is the export of the data to analysis tools, which 
allow an import of data into a visualization tool in order to display the current status and to help optimizing the carbon 
footprint due to real-time feedback for the habitant’s influencing their behavior. 
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