Available online www.jocpr.com

Journal of Chemical and Phar maceutical Research, 2014, 6(6):2950-2954

ISSN : 0975-7384

Research Article CODEN(USA) : JCPRC5

Scientific data processing framework for Hadoop MapReduce
Kong Xiangsheng and Chen Jianbiao

Department of Computer & Information, Xinxiang Usisity, Xinxiang, China

ABSTRACT

Scientific workflows produce large amounts of siifiendata. Hadoop MapReduce has been widely adbfoe
data-intensive processing of large datasets. Thaldesystem can support scientific workflows, higg#ormance
and high-throughput applications, which can be dat@nsive and compute-intensive. The paper preseat
"Kepler + Hadoop" framework for executing MapRediesed scientific workflows on Hadoop.

Keywords: MapReduce; Hadoop; scientific workflow; parallebpessing

INTRODUCTION

The current scientific computing landscape is yastipulated by the growing set of data-intensiveagotations that
require enormous amounts of computational as wellstorage resources and novel distributed computing
frameworks. On the one hand, scientific data e¢entibraries, government agencies, and other grdwgwve moved
rapidly to online digital data access and servidesstically reducing usage of traditional offliaecess methods. On
the other hand, practices for storage and presenvaf these digital data resources are far froe rraturity and
reliability achieved for traditional non-digital mi@. On the industry front, Google Scholar anccampetitors (e.qg.
Microsoft, CNKI, Baidu Library) have constructedda scale scientific data centers to provide staldb search
services with high quality of response time andilakidity. Currently scientific workflows assist isntists and
programmers with tracking their data through alinsformations, analyses, and interpretations. Aerfific
Workflow Systems is a specialized form of a workflmanagement system designed specifically to composl
execute a series of computational or data manipualateps, or a workflow, in a scientific applicati In the future,
scientific workflows will refer to the large scadeience that will increasingly be carried out tiglodistributed global
collaborations enabled by the Internet. Typicalyeature of such collaborative scientific entespsiis that they will
require access to very large data collections, lage scale computing resources and high perfareaisualization
back to the individual user scientists. Currentiatives to effectively manage, share, and reusdogical data are
indicative of the increasing importance of datavprance.

Now scientific workflows are typically used to amtate the processing, analysis, and managemenieotific data.

More and more automation tools, such as Keplerefiray Vistrails, and many others have been designerier to

allow for scientific workflows to be created, exesl, and shared among scientists and laboratdites. provide not
only a way of tracing provenance and methodolotelelp foster reproducible science and the pulidina of

executable papers, but also a visual programmimgt £nd enabling users to easily construct thgitiegtions as a
visual graph by connecting nodes together. By jliagi front-end visualizations and adaptations @llsécripts and
manual steps, it is easier for scientists to dar tlerk, especially when integrating grids and fiatgrocessing or
external databases.

STATE OF THE ART AND RELATED WORK

Scientific workflows produce huge amounts of séfentlata from observations, experiments, simulaiomodels,
and higher order assemblies, along with the assat@ncumentation needed to describe and intettpeetata, which
are stored in large data warehouses in digital fdmCurrently, more and more large-scale scienpfoblems are

2950

Kong Xiangsheng and Chen Jianbiao J. Chem. Pharm. Res., 2014, 6(6):2950-2954

facing similar processing challenges on large s$ifienlatasets which are a group of data structusesl to store and
describe multidimensional arrays of scientific dathere Hadoop could potentially help [2, 3]. Hapldas become a
widely used open source framework for large sceilensific data processing. In this paper I'm prapgshat Kepler
Scientific Workflow System and Hadoop MapReduce better approaches and solutions for scientificadat
management.

MapReduce

MapReduce is a programming model for processirggeldatasets including scientific datasets. WithMlapReduce
programming model, programmers only need to speeifyfunctions: Map and Reduce [4]. The map functakes
an input pair and produces a set of intermediagésiiie pairs. It is an initial transformation st@pwhich individual
input records can be processed in parallel. Theugedunction adds up all the values and producesuat for a
particular key. It is an aggregation or summarastep, in which all associated records must begssed together
by a single entity. It merges together these valoderm a possibly smaller set of values. Typicdlist zero or one
output value is produced per Reduce invocation. Réajuce functions are as follows.

Map:(in_key,in_value}{key;, valug | j=1...k}
Reduce:(key, [valugvalue,..., valug,])—(key, final_value)

The input parameters of Map are in_key and in_valtee output of Map is a set of <key,value>. Thpuin
parameters of Reduce is (key, [value, valug]). After receiving the parameters, Reduce is mmerge the data
which were get from Map and output (key, final \&I{b].

Hadoop

Hadoop which is an open source implementation®f@bogle's MapReduce parallel processing frameigaakmore
general distributed file system. The three Hadompponents that are analogous to Google's compodestsibed
above are:

1. the MapReduce programming model

2. Hadoop's Distributed File System (HDFS).

HDFS is a flat-structure distributed file systerattbtore large amount of data with high througlgogess to data on
clusters. HDFS has a master/slave architecturepaiiiple replicas of data are stored on multipenpute nodes to
provide reliable and rapid computations [6]. Itsstea node is called JobTracker or NameNode which semple
master server, and TaskTrackers or DataNodes venechlave servers [7].

]
]
]

4 N)

Master ' Slave
]
. (]
dobster| i) [mappers | [reduees]| iapheduc

' ayer

_ 1\ Y
]

A 4 A 4 : A 4

| operating ' system |
; l
]
(]
]
' HDFS
' data node| block layer
]
v | logs
: s block block
]

Figure 1. Architecture of Hadoop MapReduce

Kepler Scientific Workflow System

Kepler is a free software system for designing,cakag, reusing, evolving, archiving, and sharingestific
workflows. Kepler is a type of “actor-oriented mtidg” where actors are components that are desigmgerform
various processing tasks. Kepler actors perfornratjpas including process and data monitoring, prance

2951

Kong Xiangsheng and Chen Jianbiao J. Chem. Pharm. Res., 2014, 6(6):2950-2954

information, and high-speed data movement solutiBash actor has a set of input and output postsgitovide the
communication interface to other actors. Keple®sign actor can be seen as a “blank slate” whicmpts the
scientist for critical information about an acterg., the actor’s name, and port information. Kepleeeb and Grid
service actors allow scientists to utilize compotadl resources on the net in a distributed sdiemtiorkflow. Kepler

includes database actors, e.g., DBConnect whickseanilatabase connection token (after user logifbetused by
any down-stream DBQuery actor that needs it [8].

Workflows can be organized visually into sub-wookis. Each sub-workflow encapsulates a set of eablusteps
that conceptually represents a separate unit ok.widne Kepler system can support different typesvofkflows
ranging from local analytical pipelines to distried, high—performance and high-throughput appbceti which can
be data-intensive and compute-intensive [9]. Alavith the scientific workflow design and executiosafures,
Kepler has ongoing research on a number of bustgtem functionalities, as illustrated in Fig.0][1

SCIENTIFIC DATA PROCESSING FRAMEWORK FOR MAPREDUCE

While Hadoop and the MapReduce paradigm can prawiteense processing benefits for scientific useesetis
also a considerable learning curve involved witimgithe Hadoop framework. The Kepler allows udersreate
workflows using a graphical user interface. Usinglke scientists can capture workflows in a forithat can easily
be exchanged, archived, versioned, and executed.

In the case of Kepler, MapReduce is implementednagctor that can be added to workflows. In a workflactors
have “ports” which either produce or consume datdors generally take data items in, process trad, then pass
the results on to the next actor in the workflowtedDmay take different paths through the workflow ead execute
both serially and in parallel as shown in Fig.2pkee provides a good solution for users wantindpémefit from
MapReduce without having to use it for every stetheir processing.

4)
Workflow management Scientific Workflow Component
engin
(Kep]er)
Scientific Workflow analysis

Workflow Execution
Controller

(Kep]er) - /

Scientific Workflow design

Cluster - ~

Master Slave
Hadoop Task Tracker
Hadoop Job Tracker e o Beeiiion
Engine
g J

Figure 2. Scientific Data Processing Framework for MapReduce

Since Map and Reduce are two separate functionBeifMapReduce programming model, Map and Reduce are

treated as two independent sub-workflows in KeplapReduce actor [11]. Data written by some actoes@ad by
actors on different nodes. Reduce tasks read cutfiiMap tasks.

By default, data files are not stored in HDFS arsteiad are copied into HDFS from the filesystem leefoe
MapReduce actor runs, so large changes to anrexistbrkflow are not necessary. It is also possibledanfigure
Kepler to use data that is already stored in HO#tf then other actors would need to support HDF@edkif they
need access to the data. The implications of cgpfjies into HDFS before processing are not enticddar, but
could be a large bottleneck when working with massiatasets.

We implemented the Map and Reduce interface prdvigeHadoop. When execution begins, the input dzdd by
the Hadoop slaves will be transferred to the Magh Raduce subworkflows by our auxiliary input act@sch as the

2952

Kong Xiangsheng and Chen Jianbiao J. Chem. Pharm. Res., 2014, 6(6):2950-2954

MaplnputKey and MaplnputValue actor. Next, the Kepingine will execute the Map/Reduce sub-workflovith
the input data. Finally, our auxiliary output astevill transfer the output data of the subworkflotesthe Hadoop
slaves. The execution semantics for MapReduce asteution in the Map and Reduce function aretifued as
shown in Fig.3.

map (key;, value;) {
initialize Kepler execution engine for Map sub-workflow
send key; to Kepler engine via MaplnputKey actor
send value; to Kepler engine via MaplnputValue actor
execute Map sub-workflow
get (keyy, final_value) from Kepler engine via MapOutputList actor
emit (keyy, final value)
}
reduce (key,, [valuey, value, *-, valuey]) {
initialize Kepler execution engine for Reduce sub-workflow
send key, to Kepler engine via ReducelnputKey actor
send [valuey, value, -, valuey] to Kepler engine via ReducelnputList actor
execute Reduce sub-workflow
get value, from Kepler engine via ReduceOutputValue actor
emit (key,, final value)

Figure 3. Theexecution semanticsfor MapReduce actor execution in the Map and Reduce function

The Hadoop MapReduce programming model will redex single master and multiple slave nodes. Théamagrts
with sending such a message to each of the sl@bhes the master waits for any slave to return alteAs soon as
the master receives a result, it will insert theufeinto the output array and provide further wtwrkhe slave if any is
available. As soon as all work has been submitigti¢ slaves, the master will just wait for thevekato return their
last result. The master code would thus look liged as shown in Fig.4.

master (){
foreach slave {
index , value = get next_index value pair ();
send ((index , value), slave)

}

while (work available)
{
result , slave = receive_message from_any_slave ();
index , value = get_next_index_value_pair ();
send ((index , value), slave);
output [result . index | = result . value ;
b
foreach slave {
result , slave = receive_message from_any_slave ();
halt (slave);
output [result . index] = result . value ;

}
}

Figure 4. Pseudo-code for the master

The slave code would thus look like listed as shawig.5.

2953

Kong Xiangsheng and Chen Jianbiao J. Chem. Pharm. Res., 2014, 6(6):2950-2954

slave (){
until (halted){
work =receive_message from_master ();
send ((work . index , work . value * work . value), master);

}

}

Figure5. Pseudo-codefor the slave
CONCLUSION

It is clear to us that the traditional super cormmutenters consisting only of petascale computgsgpurces are not
sufficient to tackle the broad range of e-Scientallenges. A reliable, data-intensive and compniterisive, high—

performance and high-throughput scientific workfleguipped with automation tools (i.e. Kepler) armdgtie! data

analysis frameworks Hadoop MapReduce programmiolggaeeded.

REFERENCES

[1] Xiao Liu, The First CS3 PHD Symposium 202010, 49-51.

[2] R. E. Bryant, Technical Report CMU-CS-07-12&r@egie Mellon University2007.

[3]J. Ekanayake; S. Pallickara; G. Fox, In Proaegsl of the 4th IEEE International Conference ogiexe (e
Science 20082008, 277-284.

[4] Zhifeng Xiao; Yang Xiao, The First Internatidn®/orkshop on Security in Computers, Networking and
Communications2011, 1099-1104.

[5]1 DING Jian-li; YANG Bo, International Journal of Digital Content Technologyd its Applications2011(5),
236-243.

[6] B.Thirumala Rao; L.S.S.Reddinternational Journal of Computer Applicatiqr)11(34), 28-32.

[7] Chen zZhang; Hans De Sterck; Ashraf AboulnagaigrDjambazian; Rob Sladek, Lecture Notes in Coeput
Science2010, 400-415.

[8] llkay Altintas; Chad Berkley; Efrat Jaeger; Nfs#w Jones; Bertram Ludascher; Steve Mock, In 16th
International Conference on Scientific and Stati$tivatabase Management(SSDBI)04, 345-367.

[9] Sangmi Lee Pallickara; Matthew Malensek; Shejl®allickara, On the Processing of Extreme Scatadets in
the Geosciences, Handbook of Data Intensive Comgpu012, 521-537.

[10] llkay Altintas; Oscar Barney; Efrat Jaeger+fkkalLecture Notes in Computer Scien2e06, 118—-132.

[11] Jianwu Wang; Prakashan Korambath; llkay Alsit, 2011 IEEE World Congress on Servi@é4], 212-215.

2954

