Available online www.jocpr.com

Journal of Chemical and Pharmaceutical Research, 2@, 6(6):1270-1276

ISSN : 0975-7384

Research Article CODEN(USA) : JCPRC5

Scientific data mining and processing using MapRedte in cloud
environments

Kong Xiangsheng

Department of Computer & Information, Xinxiang University, Xinxiang, China

ABSTRACT

High-performance processing scientific data has enabled the development of digital resources and web-based
services that facilitate uses of data beyond those that may have been envisioned by the original data producers.
Scientific data processing systems must handle scientific data coming from real-time, high-throughput applications.
Timely processing of scientific data is important and requires sufficient available resources to achieve high
throughput and deliver accurate output results. Cloud Computing provides a low-priced way for small and medium
sized enterprises to process scientific data. Based on Hadoop MapReduce of cloud computing, we propose the
detailed procedure of scientific data processing algorithm which can improve the overall performance under the
shared environment while retaining compatibility with the native Hadoop MapReduce in this paper.

Keywords: MapReduce; Cloud Computing; Hadoop; Distributdd Biystem

INTRODUCTION

In many fields, such as astronomy, high-energy iobyand bioinformatics, scientists need to analgzabytes of
data either from existing data resources or catbdtom physical devices [1]. Scientific applicasoare usually
complex and data intensive. The current scientifimputing landscape is vastly populated by the mgwet of

data-intensive computations that require enormousuats of computational as well as storage ressuand novel
distributed computing frameworks. On the one hanntific data centers, libraries, governmeniages, and other
groups have moved rapidly to online digital dateess and services, drastically reducing usageditivnal offline

access methods. On the other hand, practicesdi@gst and preservation of these digital data ressuare far from
the maturity and reliability achieved for traditadmon-digital media [2]. On the industry front, &ye Scholar and
its competitors (e.g. Microsoft, CNKI, Baidu Libyarhave constructed large scale scientific datdersno provide
stable web search services with high quality gboese time and availability.

With the evolution in data storage, large databasee stimulated researchers from many areas edigaoiachine
learning and statistics to adopt and develop nehnigues for data analysis. This has led to a nea af data
mining and knowledge discovery. Applications ofadatining in scientific applications have been stddin many
areas. The focus of data mining in this area was#dyze data to help understanding the natureieftfic datasets.
Automation of the whole scientific discovery progéms not been the focus of data mining research.

The high demanding requirements on scientific dataters are also reflected by the increasing pdpulaf cloud
computing [3]. Cloud computing is immensely app@glio the scientific community, who increasingle $eas being
part of the solution to cope with burgeoning dadtumes. With cloud, IT-related capabilities enabd®nomies-of-
scale in facility design and hardware construcf#inThere are several vendors that offer cloud poating platforms,
representative systems for cloud computing inclGd®gle App Engine, Amazon Elastic Compute CloudZEC
AT&T's Synaptic Hosting, Rackspace, GoGrid and Appbs. For large scale scientific data centers, dclou
computing model is quite attractive because ipisaithe cloud providers to maintain the hardwafeastructure.

1270

Kong Xiangsheng J. Chem. Pharm. Res,, 2014, 6(6):1270-1276

Although the popularity of data centers is incregsit is still a challenge to provide a proper puting paradigm
which is able to support convenient access toatgelscale scientific data for performing compaotaiwhile hiding
all low level details of physical environments. Wit all the candidates, MapReduce is a broadlyuliseEfmputing
paradigm that has recently gained prominence asstpparallel implementations such as Google's MapRe and
others have been widely used to handle data-intergperations across clusters in data centers.MdgReduce
framework was originally proposed by Google in 2@0@4leal with large scale web datasets and has firesed to
be an effective computing paradigm for developiagadmining, machine learning and search applicationdata
centers.

Hadoop was in production use at established andgimgeweb companies in 2006, it is an open sourogegt and
operates under the auspices of the Apache Soff#anedation today. It was based on the Google Map&ednd is
an open source implementation of the Google's Mdp&eparallel processing framework [5]. With thea8pe open
source framework Hadoop the usage of MapReducédws spread to a large number of other applicadsnsell.
I'm proposing in this paper that Cloud Computing &adoop MapReduce are better approaches andosdiftr
scientific data processing.

RELATED WORK

Both Cloud Computing and Hadoop MapReduce are ésbrtologies that have gained a lot of popularitynigalue
to its ease-of-use and its ability to scale up emand. As a result, MapReduce scientific datagssiag is a popular
application on the Cloud [6].

The MapReduce

Over the past five years MapReduce has attainesidenable interest from both the database andregstesearch
community. MapReduce is a programming model foagabcessing. The model is simple, but at the sime
powerful enough to implement a great variety ofl@pgions.

MapReduce simplified the implementation of manyadagrallel applications by removing the burden from
programmer such as tasks scheduling, fault tolerantessaging, and data Processing [7]. Massivelglipla
programming frameworks such as MapReduce are isiaglg popular for simplifying data processing ambreds
and thousands of cores, offering fault tolerandegalr scale-up, and a high-level programming iatf The
computation takes a set of input key/value paing, groduces a set of output key/value pairs. WithMapReduce
programming model, programmers only need to spewify functions: Map and Reduce [8]. MapReduce fiomst
are as follows.

Map:(in_key,in_value}{key;, valug | j=1...k}
Reduce:(key, [valug .., valug])—(key, final_value)

The input parameters of Map are in_key and in_vallee output of Map is a set of <key,value>. Thpuin
parameters of Reduce is (key, [value, valug]). After receiving the parameters, Reduce is mmerge the data
which were get from Map and output (key, final_&glu

The map function, written by the user, takes amtiggair and produces a set of intermediate keyévphirs. It is an
initial transformation step, in which individualgat records can be processed in parallel [9]. TapReduce library
groups together all intermediate values assocattithe same intermediate key i and passes thethetdReduce
function.

The Reduce function, also written by the user, agidall the values and produces a count for aquéati key. It is an
aggregation or summarization step, in which albemsded records must be processed together bygke smtity. It
merges together these values to form a possiblylenset of values. Typically just zero or one autpalue is
produced per Reduce invocation.

There are five main roles: the engine, the masher,scheduling algorithm, mappers, and reducerk Hifure 1
shows a high level view of our architecture and litqggvocesses the data.

The MapReduce engine is responsible for splittgdata by training examples (rows). The engina tiaehes the
split data for the subsequent map-reduce invocatibhe MapReduce engine is implemented as a plagfiiponent
for the native Hadoop system and is compatible titth dedicated and shared environments.

Every scheduling algorithm has its own engine msta and every MapReduce task will be delegatets tengine.
Zaharia have proposed a new scheduling algorithiedc&d ATE (Longest Approximation Time to End). They

1271

Kong Xiangsheng J. Chem. Pharm. Res,, 2014, 6(6):1270-1276

showed that the Hadoop's current scheduler care cavere performance degradation in heterogenewirs@ments
such as virtualized data centers where unconttelladriations in performance exist [11].

query_info

Scheduling
Algorithm

Block
Block

DFS 10 Input

MaperReduce
Engine

TMap [Task

Block

Reducer
Reducer

Reduce Task

Output Result

Reducer

[Vapper] [Mapper] [Mapper][Mapper |

Figure 1. MapReduce Working Flow

The engine will run a master which acts as thedioator responsible for the mappers and the redugére master
who notifies the reducers to prepare to receivertte@mediate results as their input is respondifideassigning the
split data to different mappers, and collects thecgssed intermediate data from the mappers, ad ithturn

invokes the reducer to process it and return fieslilts. Each mapper will process the data by pgutsie key/value
pair and then generate the intermediate result ithatored in its local file system. Reducers thse Remote
Procedure Call (RPC) to read data from mappers.

The Hadoop

Hadoop stores the intermediate results of the ctamtipus in local disks, where the computation teelesrun, and
then inform the appropriate workers to retrievelljpiinem for further processing. It hides the detaif parallel
processing and allows developers to write paraliecessing programs that focus on their computgtiaiblem,
rather than parallelization issues.

Hadoop relies on its own distributed file systenfiecaHDFS (Hadoop Distributed File System): a ##&ticture
distributed file system that store large amountata with high throughput access to data on clsistdDFS is a
mimic of GFS (Google File System). Like GFS, HDR& Imaster/slave architecture, and multiple replidatata are
stored on multiple compute nodes to provide rediadnhd rapid computations [12]. As shown in figuréiRFS
consists of a single NameNode and multiple DataNdda cluster.

A client accesses the file system on behalf ofuber by communicating with the NameNode and DataNotdihe
client presents a POSIX6-like file system interfag® the user code does not need to know aboutetads of the
NameNode and DataNodes to work correctly.

DataNodes perform the dirty work on the file syst@iney store and retrieve blocks when they aretwigy clients
or the NameNode) and they report back to the NardeNzeriodically with lists of blocks that they astoring.
Without the NameNode, the file system cannot bel.usefact, if the machine running the NameNodesgdawn, all
the files on the file system would be lost sincer¢hwould be no way of knowing how to reconstriet files from
the blocks on the DataNodes. For this reasonjip@rtant to make the NameNode resilient to failur

Metadata ops J Metadata(file_name, offset of

replication....)

Client

- - - Blocks Replication - Blocks Blocks -
- I EE | m

\ Datanodes J

Rackl

Datanodes

Rack2

Figure 2. HDFS Architecture

NameNode is the master node that manages theyters name space which records the creation, deletnd
modification of files by the users and regulatdentt’ access to files, while DataNodes managegtodirectly

1272

Kong Xiangsheng J. Chem. Pharm. Res,, 2014, 6(6):1270-1276

attached to each DataNode. DataNodes which are slades perform block creation, deletion and raptia of data
blocks.

DATA MINING AND PROCESSING USING MAPREDUCE IN CLOUD ENVIRONMENTS

At the system's core, MapReduce is a style of [ghaiogramming supported by capacity-on-demandasoA good
illustrating example of how something like MapReelweorks is to compute an inverted index in parddela large
collection of Web pages stored in a cloud. Oureysputs all essential functionality inside a clowtijle leaving
only a simple Client at the experiment side forruséeraction. In the cloud, we use Hadoop HDFStre the
scientific data.

Scientific Data Mining

Figure 3 outlines one way in which these tasks mighincorporated into an end-to-end data miningiesy for
analyzing data from a science or engineering agjidic. Starting with the raw data in the form ofiges or meshes,
we successively process these data into more rdfine, enabling further processing of the datataedextraction
of relevant information. The terms, such as Rava daid Target data where they are used to destwbgrocess of
Knowledge Discovery in Databases. In adapting piiscess to scientific data sets, we have retainedb#sic
framework, but changed the tasks necessary tdforamshe data from one form to the next.

The raw data which are provided for data miningmfieed extensive processing before they can betm@ pattern
recognition algorithm. These algorithms typicalgguire, as input, the object in the data set, witlch object
described by a set of features. Thus, we first neédientify the objects in the data and extractuiess representing
each object. In scientific data sets, the data nesd to be processed before we can even idenéfglifects in the
data. Once the data have been reduced through ingngsid/or multiresolution techniques, complemenidata
sources have been fused, and the data enhancezkéoitneasier to extract the objects of interestemptial next steps
in the scientific data mining process. Once th@ahsteps of preprocessing have been applieddadtv data, the
objects in the data identified, and features reprirsg them extracted, we have a matrix wheredie represent the
data items or objects and the columns represenfetiteres. We could also have considered the rowsetthe
features and the columns to be the objects.

e

Raw Target Preprocessed Transformed Patterns Processed
Data Data Data Data Data
(Scientific Data Mining >

Figure 3. scientific data mining process

Parallel Computing over Clouds

MapReduce is a style of parallel programming suigobby capacity-on-demand clouds [13]. A good ftatng

example of how something like MapReduce works isaimpute an inverted index in parallel for a lacgélection of

Web pages stored in a cloud. Let's assume thatremizh i in the cloud stores Web paggsmz, pas, ..., and that a
Web page jpcontains words (terms);w W o, W3, A basic but important structure in informattigetrieval is an
inverted index, that is, a list

(Wi Pry P2 PLa ---)
(W, P21, P22s P23 ---)
(Ws; P31, P32 P33 ---),

where the list is sorted by the worg, and associated with each wordisva list of all Web pages pontaining that
word.

1273

Kong Xiangsheng

J. Chem. Pharm. Res,, 2014, 6(6):1270-1276

#include "mapreduce/mapreduce.h"

// User’s map function

class WordCounter : public Mapper {
public:

virtual woid Map (const MapInputé& input)

{

const string& text = input.value();

const int n = text.size();
for (int 1 = 0; 1 < n;) {

// Skip past leading whitespace

((1 < n)
i++;
// Find word end

int start = i;
while

while

i++;
if (start < i)

&& isspace(text[i]))

((1 < n) && !isspace(text[i]))

Emit (text.substr(start,i-start),"1");

}i
REGISTERfMAPPER(WordCOunter);
// User’s reduce function
class Adder : public Reducer {
virtual void Reduce (ReducelInput

* input) {

// Iterate over all entries with the same key and add the values

int value = 0;
while (!input->done())

{

value += StringToInt (input->value());
input->NextValue () ;

}

// Emit sum for input->key ()

Emit (IntToString (value

bi

REGISTER REDUCER (Adder) ;

int main(int argc, char** argv) {
ParseCommandLineFlags (argc, arg
MapReduceSpecification spec;
// Store list of input files in
for (int 1 = 1; i < argc; i++)

))

v);

to "spec"

{

MapReducelInput* input = spec.add input();

MapReduce uses a programming model that proceséstsod <key, value> pairs to produce another diskkey’,
value'> pairs. The initial list of <key, value> pais distributed over the nodes in the cloud.hk tap phase, each
Web page pi is processed independently on its leodé to produce an output list of multiple keyueapairs <wy

input->set format ("text");
input->set filepattern(argv[i]);
input->set mapper class("WordCounter");
}
// Specify the output files:
MapReduceOutput* out = spec.output();
out->set filebase("/gfs/test/freq");
out->set num tasks(100);
out->set format ("text");
out->set reducer class("Adder");
// Optional: do partial sums within map
// tasks to save network bandwidth
out->set combiner class("Adder");
// Tuning parameters: use at most 2000
// machines and 100 MB of memory per task
spec.set machines (2000) ;
spec.set map megabytes (100);
spec.set reduce megabytes (100);
// run it
MapReduceResult result;
if (!MapReduce (spec, &result)) abort();

// Done: ’'result’ structure contains info about
//counters, time taken, number of machines used, etc.
return O;

pi>, one for word yon the page.

1274

Kong Xiangsheng J. Chem. Pharm. Res,, 2014, 6(6):1270-1276

Scientific Data Processing Algorithm on MapReduce

The scientific data consist of a value from an inpuay and its index in the input array. The mastarts with

sending such a message to each of the slavesTidh the master waits for any slave to return alte&s soon as
the master receives a result, it will insert theuteinto the output array and provide further wakhe slave if any
is available. As soon as all work has been subdnittethe slaves, the master will just wait for glaves to return
their last result. In order to count the numbeoofurrences of each unique scientific word in aa$ehput files

specified on the command line, we use the belowrpmdo process the scientific data.

PERFORMANCE ANALYSIS
In fact, the use of Hadoop allows to speed up taicuns by a factor that equals the number of workagles, except
for startup effects, which are relatively small withe execution time of individual tasks is largeegh.

100000

10000
=p=Values as Text
1000

/ =fl=Values as binaries
100

g Values as binaries with reduce

=+=Values as binaries with reduce
optimized

Compute time (5.)

10

1,E+04 1,E+05 1E+06 1,E+07 1E+08 1E+09

number of tasks

Figure 4. Test for scheduling overhead

40

30 | & —h— A
20 N B Casel: TaskNum =16
— - — Case2: TaskNum =32
Case3: TaskNum = 64

Minutes

Task Failure P robability %

Figure 5. Test for the degree of fault tolerance

Figure 4 shows a test in which we run an increasimgber of tasks with one folder per task. It carsben that the
total time increases, which means that there i®wrhead for scheduling. Figure 5 shows how théegyds

resilient against failures. We again consider jwiib one folder per task. Each task has a failate of 0%, 10% or
20%. We artificially stop some of the tasks rigfteathey start, with the probabilities specififithe figure shows
that Hadoop is able to recover from these fail@®gxpected. (It restarts tasks that have failéanaatically.) The

total time does not increase markedly when tasksdae to the fact that we let tasks fail immedigtafter they

start. This shows that there is not much overhestaated with the fault tolerance mechanism. Tgeré also

shows that 64 tasks take about twice the time dfa8ks, as expected. Interestingly, 32 tasks tad® than double
the time of 16 tasks (on 20 cloud nodes), whictikisly due to an overhead cost associated withtistarand

completing a job.

CONCLUSION

As cloud computing is such a fast growing markéteentcloud service providers will appear. Itcigar to us that
the traditional super computing centers consistinty of petascale computing resources are notcseiffi to tackle
the broad range of e-Science challenges. The dootuting model, based on scientific data centeasgcale well
enough to support extremely large ondemand loads)eeded to

* Support large numbers of science gateways amdubers

* Provide a platform that can support the creatibnollaboration and data & application sharingcgsathat can be
used by virtual organizations

» Manage the computations that are driven by stseafrscientific instrument data.

A reliable, geographically distributed data cengguipped with a collection of software tools inghgl cloud
computing, parallel data analysis frameworks HaddapReduce programming tools is needed.

1275

Kong Xiangsheng J. Chem. Pharm. Res,, 2014, 6(6):1270-1276

REFERENCES

[1] Xiao Liu, The First CS3 PHD Symposiu201Q 49-51.

[2] Robert R. Downs; Robert S. Chelournal of Digital Information, 201Q(11), 35-42.

[3] Chao Jin; Rajkumar Buyya, Technical report, Theversity of Melbourne, Australi£008 1-33.

[4] Sangmi Lee Pallickara; Shrideep Pallickara; MarPierce, Handbook of Cloud Computing Springeieoe
Business Media201Q 517-527.

[5] R. Campbell; I. Gupta; M. Heath; S. Ko; M. Kazty M. Kunze; T. Kwan; K. Lai; H. Lee; M. Lyons, &S8IIX
Workshop on Hot Topics in Cloud Computir)09 1-13.

[6] H. Yang; A. Dasdan; R. Hsiao; S. Parker, Ind@edings of the ACM SIGMOD International Conferemce
Management of Dat2007, 1029-1040.

[7] Bill Howe; Peter Lawson; Renee Bellinger; E¥ik Anderson; Emanuele Santos; Juliana Freire; Gd&hthuardo
Scheidegger; Antonio Baptista; Claudio T. Silva, Rroceedings of the 4th IEEE International Confeeeon
eScience2008 127-134.

[8] zhifeng Xiao; Yang Xiao, The First Internatidn#/orkshop on Security in Computers, Networking and
Communications2011 1099-1104.

[9] Jaliya Ekanayake; Shrideep Pallickara, FougBE International Conference on eScier#)8 277-284.

[10] Cheng T. Chu; Sang K. Kim; Yi A. Lin; Yuanyuafu; Gary R. Bradski; Andrew Y. Ng; Kunle Olukotuim,
Advances in Neural Information Processing Systems 19,2006 281-288.

[11] Sangwon Seo; Ingook Jangl; Kyungchang Wooydrkim; Jin-Soo Kim; Seungryoul Maeng, In Proceegin
of the 2009 IEEE Cluste2009 1-8.

[12] B.Thirumala Rao; L.S.S.Reddyternational Journal of Computer Applications, 2011(34), 28-32.

[13] DING Jian-li; YANG Bo,International Journal of Digital Content Technology and its Applications. 2011(5),
236-243.

[14] W. Kleiminger; E. Kalyvianaki; P. Pietzuch, IRroceedings of the 6th International Workshop atf S
Managing Database Syster@911, 16-21.

1276

