Available online www.jocpr.com

Journal of Chemical and Pharmaceutical Research, 2017, 9(3):373-384

ISSN : 0975-7384

Research Article CODEN(USA) : JCPRC5

Repurposing HSP70 Inducing Compounds for Targeting Post-Mitotic Cell
Division: Novel Promises as Neuroprotectants

Renu Sharma and Pravir Kumar’

Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly
DCE), Delhi, India

ABSTRACT

The recent findings related to cell cycle re-entry mediated neurodegeneration in post mitotic neurons have
triggered rampant research in this area. Cell cycle has been identified as a true, causative phenomenon
occurring during prodromal stages of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s
disease. Heat shock proteins are internal ‘stress absorbing’ machinery which comes into force to protect the
cell against heat, oxidative stress. Owing to its chaperonic activity, HSP70 has been shown to mediate pro-
survival pathways in several diseases including neurodegenerative diseases. We therefore set out to check
whether HSP70 inducing compounds can be repurposed to target post-mitotic cell division. Various in silico
methods such as homology modelling, Ramachandran plots, Lipinski filter, ADMET analysis and molecular
docking studies were performed. We report novel potential of some HSP70 inducing compounds in ameliorating
post-mitotic cell division led neurodegeneration which has wide implications in Alzheimer’s disease and
Parkinson’s disease.
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INTRODUCTION

Toxic protein burden has been identified as the common underlying molecular switch to neurodegeneration in
several neurodegenerative diseases (NDD) such as Alzheimer's disease (AD), Parkinson’s disease (PD),
Huntington’s disease (HD), Inclusion body myositis (IBM) and Poly myositis (PM). While a host of stressors
which induce neuro-muscular degeneration (NMD) namely aging, oxidative stress, impaired ubiquitin
proteasome system (UPS), mitochondrial breakdown, loss of function of protective proteins and mutations have
been identified, the quest for new players has been on-going for the simple reason that the known players do not
add up to all the outcomes of neurodegeneration. The ectopic re-entry of cell cycle in post-mitotic cells such as
neurons and muscles has been recently identified as a culprit in NMD. Normally, the cell cycle remains
suppressed for lifetime and these cells never divide. However, re-expression of cell cycle markers such as cyclin
C, cyclin D, cyclin E along with other markers of active cell cycle has been observed in the AD, PD, ALS, PM
and IBM. Moreover, the occurrence of cell cycle proteins during early stages of NDD and their co-existence
with pathological proteins has placed fresh impetus on cell cycle re-entry (CCE) as a ‘causal’ phenomenon in
NDD [1]. Once triggered, the cell cycle ensured DNA synthesis in S phase followed by severe neuronal death
and neurodegeneration in various NDD [2]. The major thrust of present study is flavonoids which are a class of
plant based phenolic compounds with high content in oranges, grapes, lemons, red wine and green tea. The
signature properties of flavonoids include antioxidant, anti-inflammatory, anti-allergic, antiviral, antibacterial,
anticancer, anti-hypertensive, insulin-sensitizing and anti-ischemic [3]. Moreover, flavonoids are well tolerated
in human body and display enhanced bioavailability and negligible toxicity in comparison to their synthetic
counter-parts. Furthermore, they have been shown to improve upon disease symptoms by modulating various
signal transduction pathways. Molecular chaperones are a class of intracellular proteins which assist the
misfolded/toxic protein in regaining its native conformation or alternatively mediating its degradation via UPS
thus triaging protein homeostasis inside the cell. Heat shock proteins (HSPs) are molecular chaperones
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expressed constitutively in the nervous system which are involved in decreasing neurotoxicity and enhancing
neuronal cell survival in various NDD [4,5]. HSP 70 has been shown to associate with p53and arrest the cell
cycle at G4/S. Further, the activity of cell cycle inhibitor p27 was modulated by HSP70 [6]. Furthermore, the
G1/S transition markers cyclin D1 and E were reported to associate with elevated level of HSP70 in IBM and
PM thereby speculating their strong co-relation [7]. Mounting evidence has outlined HSP70 induction as the
major route in mediating pro-survival action of most drugs and biomolecules in PD and other NDD [8,9].
Moreover, we previously outlined Arimoclomol to be a promising neuroprotectant through HSP70 induction in
cell cycle driven neurodegeneration [1,10]. Therefore, it is pertinent to understand that HSP70 inducing
compounds could be a new line of neurotherapeutics in CCE mediated neurodegeneration. We carried out
comprehensive data mining on HSP70 inducers in NDD and carried out the study with twenty compounds.
Various virtual screening methods such as, Lipinski filter, Ghose and Veber parameters, pharmacophore
generation and ADME analysis were applied to screen drug-like compounds. Further, Homology modelling, 3D
structure validation and Ramachandran plots of proteins were performed to establish model accuracy. Finally,
ligand-protein interactions were studied with the targets of interests; G¢/G; phase markers i.e. cyclin C and
cyclin D1 through molecular docking studies. Our results have outlined strong potential of three HSP70
inducing compounds namely Indomethacin, Bimoclomol and Sesamol in attenuating levels of cyclin D1 and
cyclin C. These observations may have promising implications in targeting CCE mediated neurodegeneration in
AD, PD and HD. Our results have reinforced the promising potential of HSP70 inducers as novel
neuroprotectants in ameliorating CCE mediated neurodegeneration.

MATERIALS AND METHODS

Data mining

Data mining was done with the keywords HSP70 inducing compounds in neurodegeneration in the NCBI
database. Also, extensive literature survey was carried out. The filter criteria were set to HSP70 inducers in cell
cycle and/or neurodegeneration and accordingly, list of 20 potential compounds was prepared.

Retrieval of ligand structure
The sdf files of all the 20 compounds were retrieved from the PubChem database
(http://www.pubchem.ncbi.nlm.nih.gov/). The pubChem database stores physio-chemical and biological
information of compounds from three different databases. Additionally, their structures, physical and chemical
properties were also obtained.

Drug-likeliness analysis

The drug ability of all the 20 potential candidates was tested through Lipinski filter analysis via the online tool.
As the name suggests, Lipinski’s rule of five is used to distinguish between compounds which may be converted
into drugs from the negative candidates of drug-likeliness. The five rules of Lipinski are: (a) molecular mass
<500 Dalton, (b) logP < 5, (c) hydrogen bond donors< 5, (d) hydrogen bond acceptors< 10 and (e) Molar
refractivity between 40 -130 [11]. The other two markers used for drug-likeness screening were Ghose filter and
Veber rules (www.swissadme.ch/index.php). The qualifying parameters of Ghose filter are (a) molecular weight
160-480 (b) number of atoms 20-70 (c) molar refractivity 40-130 (d) molar refractivity -0.4-5.6 (e) polar surface
area <140 [12]. Finally, the Veber rules of (a) rotatable bond count <=10 and (b) polar surface area <=140 were
applied to the compounds [13].

ADMET analysis

The toxicity profiling of ligands was carried out through the online tool SwissADME
(www.swissadme.ch/index.php). The Swiss ADME tool assessed the ligands on various parameters such as
lipophilicity (logP), hydrophilic nature (logS) and Blood Brain Barrier (BBB) permeability.

Pharmacophore based target prediction

The pharmacophore is a spatial arrangement of electronic and steric properties of a ligand which are responsible
for its biological response against a particular target. Pharmacophore based target prediction was done with web
server PharmMapper(http://59.78.96.61/pharmmapper/index.php) [14].

Protein Homology modelling and Structural validation

The Brookhaven Protein Data Bank (PDB) was searched for suitable templates of cyclin D1 and cyclin C for
homology modeling using the BLASTP search with default parameters. Accordingly, PDB ID 2W96.A and
3RGF for cyclin D1 and cyclin C respectively were selected. The homology modeling of given templates was
performed using the Swiss Model server (http://swissmodel.expasy.org/) [15].
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The 3D model so generated was tested for structural and stereo-chemical evaluation using the online server
RAMPAGE (http://www.mordred.bioc.cam.ac.uk/~rapper/rampage.php) [16]. The RAMPAGE tool allowed for
residue by residue analysis of cyclin D1 and cyclin C geometry. Finally, the structural validation and accuracy
of the models was checked with Errat(http://nihserver.mbi.ucla.edu/ERRATV2/).

Prediction of physio-chemical properties
The physio-chemical properties of cyclin D1 and cyclin C were predicted using the web based server ProtParam
(http://web.expasy.org/protparam/) by using the Uniprot IDP24385 and P24863 respectively.

Active site prediction

The active sites of cyclin D1 and cyclin C were predicted using the Pock Drug tool(http://pockdrug.rpbs.univ-
paris-diderot.fr/cgi-bin/index.py?page=home) [17]. The PDB structures of cyclin D1 and cyclin C were
uploaded and binding pockets were predicted using the fpocket estimation and setting ligand proximity
threshold at 5.5.

Preparation of proteins and ligands for docking

The proteins and ligands were prepared for docking using the online Docking Server
(http://www.dockingserver.com/web) [18]. The proteins were cleaned and appropriate chain; A and B for cyclin
D1 and cyclin C respectively selected for docking. Next, charge onprotein and ligands was added using
Gasteiger method and solvation parameters set to default. The ligand geometry was optimized using MMFF94
method. Further, all non-polar H, atoms were merged, rotatable bonds defined and pH set to 7.0.

Molecular docking

The optimized proteins and ligands were used for molecular docking studies using the online Docking Server
(http://www.dockingserver.com/web).The Autodock tool was used for adding Kollman united atom type
charges, essential H, atoms and solvation parameters. Affinity grid maps were generated with 0.375 A spacing
[19]. Further, the van der Waals and electrostatic interactions were calculated using Autodock parameter set and
distance-dependent dielectric functions respectively. Furthermore, the Lamarckian genetic algorithm and Soils
and Wets local search method was used for docking simulations [20]. During docking, all rotatable torsions
were dropped. Every docking study was arrived after ten different runs with a cut off energy estimation of
250000. Finally, translational step with 0.2A, torsion and quaternion steps of 5 were used with a population size
of 150.

RESULTS

Selection of ligands
The compounds along with their structure, physical properties and signalling cascade modulated in NDD and
neuro-oncology have been summarised in Table 1.

Screening for drug-likeness and ADMET Analysis of compounds

Most of the compounds passed drug-likeness parameters but failed ADMET analysis predictions (Table 2).
Bimoclomol, Indomethacin and Sesamol qualified all the above parameters and were used in further study.
While the bioavailability score of Sesamol and Bimoclomol was 0.55, Indomethacin had the highest predicted
bioavailability of 0.56.

Pharmacophore based target prediction

The pharmacophore based target prediction of Indomethacin, Bimoclomol and Sesamol outlined various cell
cycle proteins such as Cyclin A2, cell division protein kinase 2, VEGFR2 and MAPK18 which further
strengthens our premise of their use in targeting cell cycle (Figure 1).

Homology modeling of proteins

The template shared 100% sequence similarity with cyclin D1 and cyclin C and was used to generate their 3D
structures using Swiss Model. The Z QMEAN4 score indicative of overall quality of generated models with
respect to non-redundant set of PDB structures was -1.68 and -0.64 for cyclin D1 and cyclin C respectively
(Figure 2). Thus, the predicted protein structures satisfied good quality models.
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Table 1: Physio-chemical properties and modulated signalling pathways of compounds

S.No.

Compound

Structure

Molecular weight
(g/mol)

Molecular
formula

Modulated signalling in
NDD/Neuro-oncology

References

Bimoclomol

297.783

C14H20CIN;O,

Augmented HSP70 level in
ALS

[21]

Celastrol 7

450.619

Ca29H3504

Induced HSP70 and acted
pro-survival in neurons post
TBI damage, anti-
inflammatory, Rapid
induction of HSF1

[22]

BGP-15

351.272

C14H24C12N4O;

Induced HSP70 and acted
pro-survival in neurons post
TBI damage, anti-
inflammatory

[22]

Arimoclomol

313.782

C14H20CIN;O3

Induced HSP70, delayed
progression of ALS

[21]

Colchicine

399.443

C22H2sNOs

Induced HSPB8 which in
turn attenuated accumulation
of misfolded TDP-43 and
TDP-25 in ALS via
HSP70/HSC70-CHIP
complex

[23]

Indomethacin

357.79

C19H16C|N04

Induction of HSP70,
attenuated AP induced
damage in AD

[24]

Kyneuric Acid

189.17

Inhibited proliferation,
migration and DNA synthesis

[25]

Naringenin [

—0

272.256

CisH1205

Rescued against 6-OHDA
induced toxicity through
Nrf2/ARE signaling

[26]

puromycin

471518

C22H2N705

Elicited HSP70 expression in
response to ROS

[27]

376




R Sharma and P Kumar

J. Chem. Pharm. Res., 2017, 9(3):373-384

10

Radicicol

364.778

C15H17ClOg

Inhibit huntingtin aggresome,
elevated HSP70

[28]

11

Ruxolitinib

306.373

Ci7H18Ns

Increased HSP70, Inhibited
ERK1/2, Akt, STAT3 and
STATS

[29]

12

Sesamol

138.122

C7HgO4

Protected against
amyloidogenesis and
cognitive dysfunction

through NF-KRB inhibition

(30]

13

Withaferin

470.606

Ca2H3505

Induction of
HSP70,HSP27,MAPK,
Inhibition of Akt/Mtor and
cell cycle at G2/M

[31]

14

Doxorubicin

543.525

Ca7H20NOy;

Induced HSPB8 which in
turn attenuated accumulation
of misfolded TDP-43 and
TDP-25 in ALS via
HSP70/HSC70-CHIP
complex

[23]

15

17AAG

585.698

Ca31H43N30g

Blocked cell proliferation
through Wnt/B catenin
pathway attenuation

(32]

16

17DMAG

616.756

Ca2HysN4Og

HSP70 induction, anti-
inflammatory, anti-oxidant

(33]

17

Azitidine

57.096

CsH/N

protein synthesis inhibition,
induction of chaperones

[34]
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Table 2: Drug-likeness and ADMET screening analysis
SNo Compound Drug likeness Ag. Solubility Lipophilicity BBB Bioavailability
T P Lipinski | Ghose | Veber | LogS(ESOL) | GI permeability XLogP3 Permeability Score
1 Bimoclomol Y Y Y -2.9 High 2.21 Y 0.55
2 Celastrol Y N Y -6.31 Low 5.94 N 0.56
3 BGP-15 Y Y Y -3.21 High 2.18 N 0.55
4 Arimoclomol Y Y Y -2.37 High 1.22 N 0.55
5 Colchicine Y Y Y -2.9 High 1.03 N 0.55
6 Indomethacin Y Y Y -4.86 High 4.27 Y 0.56
7 Kyneuric Acid Y Y Y -2.29 High 1.29 N 0.56
8 Naringenin Y Y Y -3.49 High 2.52 N 0.55
9 puromycin Y N N -2.51 Low 0.03 N 0.55
10 Radicicol Y Y Y -4.4 High 3.36 N 0.55
11 Ruxolitinib Y Y Y -3.26 High 212 N 0.55
12 Sesamol Y N Y -1.92 High 1.23 Y 0.55
13 Withaferin Y N Y -4.97 High 3.83 N 0.55
14 Doxorubicin N N N -3.91 Low 1.27 N 0.17
15 17AAG Y N N -4.67 Low 2.64 N 0.55
16 17DMAG Y N N -4.42 Low 2.04 N 0.55
17 Azitidine Y N Y -0.07 Low -0.15 N 0.55
18 Geldanamycin Y N N -4.24 Low 1.99 N 0.11
19 MG132 Y N N -4.77 High 4.83 N 0.55
20 Sodium Y N Y 259 High 226 N 055
Salicylate

Quality assessment and physio-chemical description of 3D structures
The generated 3D structures were checked for validation in terms of steric and geometric conformations. For
this, the Ramachandran plots were generated (Figure 2). The results showed 91.3% residues of cyclin D1 in the
most favored region while 5.5% were in the allowed region. Further, 3.1% residues fell in outlier region.
Similarly, for cyclin C 98.4% residues were seen in the favored region, 1.4% in the additionally allowed region
and only 0.2% residues in the disallowed region. Further, cyclin D1 and cyclin C passed the model accuracy
with 85.77% and 90.98% respectively. So overall, the structures of both the proteins were validated with good
scores. The predicted physio-chemical properties of the models are summarized in Table 3.
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Figure 1: Pharmacophore based target prediction of Indomethacin, Sesamol and Bimoclomol (top to bottom in order)
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Figure 2: Structural validation of cyclin C and cyclin D1 (left to right)
Table 3: Predicted physio-chemical properties of cyclin D1 and cyclin C

Negatively Positively
Protein Mol wt. | Atomic composition No. of_ Theoretical cha}rged cha}rged Ingtablllty AI_|phat|c GRAVY
Amino Acids Pl residues residues index index
Asp+Glu Arg+Lys
C’gl"” 33729.11 | CuuaoHzassNsscOusoSas 295 4.97 47 34 57.71 9292 | -0.185
Cyclin C | 33242.73 | CispoH2348N3840417N17 283 6.95 32 32 49.97 92.69 -0.158

Active site prediction
Based on drugability score, cavity volume and standard deviation, cyclin D1 had best pocket at P5 with a score
of 0.95 and0.01standard deviation (Figure 3a). The volume of given pocket was 1079.69 cubic angstroms and
16 residues were involved in interaction. Similarly, PO was best predicted active site for cyclin C with 0.97 score
(Figure 3b). The volume of this cavity was found to be 3732.64 cubic angstroms and 38 residues were involved
in interaction at this site. These pockets were used for docking the ligands and same residues as predicted were
found to be involved during docking.

. VoL Hydroph, . Polar Aromatic | Otyr . W®, Orvgg .  Stancard
PO 60078 082 056 013 00 20 (7] 0.03
Pt uuE2 0% 054 018 00 20 ore 0.08
P2 145086 028 045 02 00 200 078 0.08
r3 0T oxn 0% 012 00 170 oss 0.01
P4 150319 084 045 0.04 00 240 044 004
rs 006 062 044 013 00 160 088 0.01
Pe 12066 0 048 014 002 210 or 0.03
»7 0883 028 041 024 00 170 0 0.04
Ps %0812 079 036 007 003 140 088 0.02
. VoL Mydroph, . Polar  Aromatic . Otyr . NS, Orugg .  Standard
PO 37264 058 042 016 001 80 087 00
P1 206813 A9 on 027 001 260 013 003
(31 121864 101 on 012 00 170 025 002
30 amrar 03 047 007 a0 150 o84 002
pir e 219 081 013 00 160 002 00
P2 253502 047 048 026 00 270 074 0.1
P2 sMm74 070 0z 027 00 150 090 0.01
P3 4R 04s 039 07 002 180 067 0.0
Pa 1200 047 0% 025 02 200 on 003
rs ®812 0w 0s 025 o2 160 092 001

Figure 3: Predicted active sites (top 10) in cyclin D1 (a) and cyclin C (b)
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Molecular docking of ligands with cyclin D1

Bimoclomol and cyclin D1: While the total intermolecular energy of Bimoclomol and cyclin D1 was -
5.49kcal/mol, the estimated free energy of binding was found to be -4.77Kcal/mol (Figure 4a). Bimoclomol
formed hydrogen bonds with LEU148 (-3.9537kcal/mol). Further, ASN151 was involved in polar bond
formation with -1.0163kcal/mol and LEU91formed hydrophobic bond with Bimoclomol (44.6643kcal/mol).

Indomethacin and cyclin D1: The estimated free energy of binding for cyclin D1-Indomethacin interaction

was -5.51kcal/mol and total intermolecular energy was -6.68kcal/mol (Figure 4b). The H,bond energy with
ALA39 was unfavorable (23.1104kcal/mol). Further, two polar bonds were formed with ARG87 (-
6.319kcal/mol) and SER41 (-2.497kcal/mol).

Sesamol and cyclin D1: Sesamol interacted with cyclin C to generate estimated free energy of binding -
3.76kcal/mol and total intermolecular energy of -4.06kcal/mol. Polar bond was formed with ASN83 (-
0.1798kcal/mol). Four hydrophobic bonds were formed with PRO199 (-0.9286kcal/mol), ALA39 (-
0.5013kcal/mol), PRO40 (-0.2763kcal/mol) and PRO200 (-0.195kcal/mol) (Figure 4c).

Molecular docking of ligands with cyclin C

Bimoclomol and cyclin C: The estimated free energy of binding for cyclin C and Bimoclomol was -
4.02kcal/mol, while the total intermolecular energy was -6.24kcal/mol. Hydrogen bond with -0.2489kcal/mol
energy was formed between THR66. While the polar bond energy of ASP182 was -3.9173kcal/mol,
hydrophobic bonds formed with TYR 184(-1.8162kcal/mol) and ILE62 (-0.3802kcal/mol). Further, GLN49
formed halogen bond with -7.6881kcal/mol energy (Figure 4d).

Indomethacin and cyclin C: Indomethacin interacted with cyclin C and generated high estimated binding
energy of -5.68kcal/mol and total intermolecular energy -7.22kcal/mol. Further, five polar bonds were formed
with ASN46, ARG185, GLN59, THR66 and GLN49 having energy values of -0.8421, -0.5951, -0.5475, -0.2608
and -0.2379 kcal/mol respectively. Next, two hydrophobic bonds were formed between TRP241 (-
0.6165kcal/mol) and ILE62 (-0.4887kcal/mol) (Figure 4e).

Sesamol and cyclin C: The estimated free energy of binding for cyclin C-Bimoclomol interaction was -
4.31kcal/mol and total intermolecular energy was -4.61kcal/mol. Two polar bonds were formed between TYR37
(-0.686kcal/mol) and ARG25 (-0.4014kcal/mol). Further, three hydrophobic bonds were formed with TYR73(-
0.945kcal/mol), PHE69(-0.5898kcal/mol) and LEU78(-0.3605kcal/mol) (Figure 4f).

Figure 4: Docking of cyclin D1 with Bimoclomol, Indomethacin and Sesamol (a,b,c) and cyclin C (d,e,f) respectively with the
interacting residues (inset)
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The comparative analysis of docking calculations was done (Table 4) and Indomethacin was found to be the best
compound for targeting and inhibiting cyclin D1 as well as cyclin C thereby, implicating its strong and diverse
potential in attenuating Go/G; checkpoints in cell cycle.

Table 4: Comparative analysis of ligands-proteins docking calculations

Energy Parameters CYCLIN D1 CYCLINC

Bimoclomol Indomethacin Sesamol Bimoclomol Indomethacin Sesamol

Estimated free energy of binding (Kcal/mol) -A.77 -5.51 -3.76 -4.02 -5.68 -4.31
Estimated inhibition constant (uM) 317.57 91.17 1.74 1.12 69 696.84

vdW+Hbond+desolv energy (Kcal/mol) -5.89 -6.67 -4.07 -6.11 -7.06 -4.6

Electrostatic energy (Kcal/mol) 0.41 -0.01 0.01 -0.13 -0.16 0

Total intermolecular energy (Kcal/mol) -5.49 -6.68 -4.06 -6.24 -1.22 -4.61

Interacting surface 600.646 624.148 366.636 576.194 645.711 305.971
DISCUSSION

The cell cycle re-entry mediated neurodegeneration contributes heavily in the demise of post-mitotic neurons
and muscles. Since cyclins C and D are first respondents of a re-activated cell cycle,thus, targeting these can be
‘nib in the bud’ strategy in halting/ameliorating the evil cascade of cell cycle led neuronal death. HSPs are
molecular chaperones which are upregulated during stress to protect the cell against heat, hypoxia and ROS
generation. HSP70 in particular, has been shown to promote neuronal cell survival by inducing autophagy and
mediating the activation of pro-survival signaling cascades [4]. Moreover, HSP70 is closely associated with cell
cycle and interacted with cyclin D1 in IBM and PM [7]. It is therefore imperative to search for compounds
which can induce the level of HSP70 in NDD as a key neuroprotective strategy. Further, currently available
drugs provide only symptomatic relief; therefore, flavonoids are favored by neuroscientists owing to their
beneficial effects and negligible toxicity. In the present study, we proposed and tested the efficacy of HSP70
inducing compounds in ameliorating cell cycle led neurodegeneration in various NDD. Since most drugs fail on
poor solubility, we screened the compounds for ADMET and pharmacokinetics analysis. It is evident that in
vivo bioavailability of an orally administered drug is largely dependent on its aqueous solubility and dissolution
in Gl fluids [38]. More the water solubility and Gl permeability, better the bioavailability. Similarly,
lipophilicity of a drug affects various physiological properties such as the rate of metabolism, transport across
cell membrane and interaction with binding sites of receptor. Further, drugs intended for CNS should have logP
value less than four [39,40]. Indomethacin, Bimoclomol and Sesamol showed logP values of 4.27, 2.21 and 1.23
respectively.However, the most important property required of a compound to be a neuroprotective agent is the
ability to cross Blood brain barrier (BBB). As expected, most compounds failed the BBB permeability
parameter. Three biomolecules namely, Bimoclomol, Indomethacin and Sesamol could cross the BBB and
combined with their high GI absoption, least violations of drug likeness and good bioavailability score, were the
best candidates for targeting NDD in our study. Further, pharmacophore based target prediction of these three
compounds listed various cell cycle proteins which further supported our repurposing premise. Finally,
molecular docking studies indicated Indomethacin as the best compound for HSP70 mediated targeting of post-
mitotic cell cycle based on its high pharmacokinetics and docking calculations. Further, our results are backed
by various in vitro and in vivo studies wherein these compounds have displayed promising neuroprotective
action in various NDD. For instance, Bimoclomol has its derivative Arimoclomol already under Phase 11 clinical
trials in ALS [41]. Indomethacin was shown to ameliorate AB1-42 triggered damage in AD mice model as well
as in hippocampal cultures [24]. Similarly, Sesamol reversed PD linked symptoms in a rotenone model [42].
Hence, our compounds are validated for their neuroprotective action and yet, add to the hunt for protective
biomolecules in alleviating cell cycle led neurodegeneration.Our study has outlined novel potential of
Indomethacin, Bimoclomol and Sesamol in inhibiting/down-regulating the level of cyclin D1 and cyclin C. Out
of these, Indomethacin showed best binding with both the cyclins, speculating its strong potential in inhibiting
Gy/G; phase reactivation in terminally differentiated neurons in various NDD. Further, the protective action of
these compounds in attenuating cell cycle re-entry may be mediated through HSP70. These findings can open up
a new window of therapeutics for targeting ectopic cell cycle activation led neurodegeneration and need further
validation through in vitro and in vivo cell cycle studies.

CONCLUSION

The study evaluated the potential of HSP70 inducing compounds for targeting post-mitotic cell cycle in
neurodegenerative disorders. Based on BBB permeability, pharmacokinetic properties and ADMET analysis, we
have shortlisted Indomethacin, Bimoclomol and Sesamol amongst twenty compounds for targeting cell cycle
proteins; cyclin D1 and cyclin C. Further, our study demonstrated that Indomethacin has the highest potential in
stalling or inhibiting cell cycle, based on high free energy of binding with both the markers of G¢/G; phase.
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Moreover, the cell cycle inhibiting effect of these compounds may be elicited through HSP70 induction. To the
best of our knowledge, these compounds are novel for their use in targeting post mitotic cell division in
neurodegenerative disorders
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