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ABSTRACT 
 
Quantitative structure activity relationship (QSAR) models for prediction of the EC50 of the peroxisome 
proliferator-activated receptors (PPARs) have been developed basis on the linear heuristic method(HM). Molecular 
descriptors were used to represent the characteristics of compounds. HM was used to pre-select the whole 
descriptor sets and to build the linear model. The new compounds were designed according to the QSAR models. 
The same descriptors were applied in the model and the satisfied EC50 values were obtained for the designed 
compounds. The selected descriptors will help for new drug design and the models are available for predicting the 
EC50 of the new drugs. 
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INTRODUCTION 
 
In developed countries, chronic diseases such as diabetes, obesity, atherosclerosis and cancer are the most 
frequent reasons which cause of death. The peroxisome proliferator-activated receptors (PPARs) are a group of 
nuclear receptors (NRs) that control many cellular metabolic processes.  
 
Recently, a new group of PPARs with thiazolyl-phenoxy were synthesized [1]. The EC50 (a quantal dose 
response curve represents the concentration of a compound) of all compounds were evaluated for human 
PPARα and human PPARδ in vitro potency by fluorescence resonance energy transfer (FRET) assays. PPARγ 
activity was assessed using a cell-based functional assay (IRBA) in mouse T3-L1 cells [1, 2]. However, these 
methods are laborious, expensive, or time-consuming and require a sufficient quantity of the pure compounds. 
Therefore, there need suitable way to high-throughput screening of millions of compounds. QSAR is a 
potential and useful technique to estimate the EC50, especially for the compounds that are not easy to test.  
 
QSAR study is a key step for new drug design and screen. The HM is a novel machine learning method [3], 
which has been successfully used to predict the evaporation estimation [4] and the cement strength [5]. In the 
present work, the HM was utilized to set up the QSAR model for a new class PPARs compounds. Basis on the 
model, we designed a group structures and predicted the EC50 by the model. Therefore, three compounds have 
been found the good EC50 values. 
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EXPERIMENTAL SECTION 
 

2.1. Data preparation  
The experimental values for the EC50 of PPARs were taken from the literature [1]. The data set was randomly 
separated into a training set of 28 compounds and a test set of 12 compounds in PPARα and PPARδ groups, 
and a training set of 27 compounds and a test set of 12 compounds PPARγ group. The training set was used to 
build the model and the test set was employed to evaluate the prediction ability of the model (Table 1). 

 
Table 1. Experimental and predicted log(EC50) of 4-Thiazolylphenyl Analogs by HM 

O

HO

O

O

S

N

R1

R2

R3

 

No. R1 R2 R3 
PPARα 

log(EC50)  
Exp. HM  

1 n-Pr 
H H 

2.05 2.17   
2 OMe 2.41 3.30   
3 OMe Me H 2.43 2.96   
4 H 

H Et 
3.11 2.66   

5 n-Pr 2.17 1.85   
6 OMe 2.40 2.31   
7 n-Pr H t-Bu 1.94 1.96   
8 n-Pr 

H CF3 
2.29 2.27   

9 OMe 2.64 2.69   
10 H 

Me Me 
3.10 2.62   

11 OMe 1.92 2.26   
12 H 

 

2.05 2.51   
13 n-Pr 2.52 1.88   

14 OMe 1.72 2.28   

15 H 

 

2.59 2.34   
16 n-Pr 1.63 1.73   

17 OMe 1.64 2.11   

18 n-Pr 

O  

2.00 2.08   

19 OMe 2.52 2.33   

20 OMe 

 

2.72 2.44   

21 H 
COCH3 Me 

3.40 3.13   
22 n-Pr 2.24 2.42   
23 OMe 2.75 2.82   
24 n-Pr 

CONMe2 Me 
2.15 2.37   

25 OMe 2.90 2.93   
26 H 

COOH Me 
4.00 4.19   

27* n-Pr 3.23 3.07   
28* OMe 4.00 3.42   
29* n-Pr COOH CH2OH 3.81 3.82   
30* n-Pr H CH2CO2H 3.39 3.28   
31* H 

H OMe 
3.76 3.09   

32* OMe 2.88 2.87   
33* H 

H OEt 
2.00 2.70   

34* n-Pr 2.02 2.08   
35* OMe 3.13 2.61   
36* n-Pr 

H Oi-Pr 
1.67 1.87   

37* OMe 2.26 2.31   
38* n-Pr 

Me OEt 
1.79 2.05   

39 OMe 2.18 2.11   
40 OMe Et OEt 2.72 2.25   

The star “*” represents the test set. 
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2.2. Calculation of the descriptors 
To obtain a QSAR model, compounds are often represented by the molecular descriptors. All molecules were 
drawn into Hyperchem [6] and pre-optimized using MM+ molecular mechanics force field. A more precise 
optimization had been done with semi-empirical AM1 method in MOPAC [7]. The molecular structures were 
optimized using the Polak–Ribiere algorithm until the root mean square gradient is 0.01. The MOPAC output 
files were used by the CODESSA program [8, 9] to calculate five classes of descriptors: constitutional, 
topological, geometrical, electrostatic, quantum chemical. CODESSA combines diverse methods for 
quantifying the structural information about the molecule with advanced statistical analysis to establish 
molecular structure–property/activity relationships. CODESSA had been applied successfully in a variety of 
QSAR analyses [10-13]. 
 
2.3. Development of linear model by the HM [10-13]  
Once the molecular descriptors are generated, the HM in CODESSA is used to pre-select the descriptors and 
build the linear model. The advantages of the HM are the high speed and no software restrictions on the size of 
the data set. The HM can either quickly give a good estimation about what quality of correlation to expect 
from the data, or derive several best regression models. The details of selecting descriptors are as follows: First 
of all, all descriptors are checked to ensure that values of each descriptor are available for each structure. 
Descriptors for which values are not available for every structure in the data are discarded. Descriptors having 
a constant value for all structures in the data set are also discarded. Thereafter all possible one-parameter 
regression models are tested and the insignificant descriptors are removed. As a next step, the program 
calculates the pair correlation matrix of descriptors and further reduces the descriptor pool by eliminating 
highly correlated descriptors. The details of validating intercorrelation are (a) all quasi–orthogonal pairs of 
structural descriptors are selected from the initial set. Two descriptors are considered orthogonal if their 
inter-correlation coefficient r ij is lower than 0.1; (b) CODESSA uses the pairs of orthogonal descriptors to 
compute the bi-parametric regression equations; (c) to an MLR model containing n descriptors, a new 
descriptor is added to generate a model with n+1 descriptors if the new descriptor is not significantly 
correlated with the previous n descriptors; step (c) is repeated until MLR models with a prescribed number of 
descriptors are obtained. The goodness of the correlation is tested by the square of coefficient regression (R2), 
square of cross-validate coefficient regression (RCV

2), the F-test (F), and the standard deviation (s2). 
 

RESULTS AND DISCUSSION 
 

The HM was used to develop the linear model for prediction the EC50 of PPARs basis on the calculated 
structural descriptors. The correlation coefficient value of each the two descriptors are lower than 0.80, which 
means that the descriptors are independent in the analysis. The correlation model was given as follows: 
 

5 0 ( ) 5 .5 9 5 4 .2 1 4 1 6 .3 8 1 .0 3P P A RE C F N S A P M I F P S Aα = − − + +  
22 8, 0 .69 , 2 7 .3 3, 0 .1 4n R F R M S= = = = , where FNSA, PMI and FPSA represent FNSA-3 Fractional 

PNSA (PNSA-3/TMSA, Quantum-Chemical PC), principal moment of inertia A and FPSA-2 Fractional PPSA 
(PPSA-2/TMSA, Quantum-Chemical PC), respectively. 
 

CONCLUSION 
 

In this work, we applied linear and non-linear models for the prediction of EC50 value of a set of 40 PPARs. 
The proposed linear model could give the satisfied QSAR models for three groups’ compounds. The results of 
this work indicate that the HM is a very promising tool. These models will assistant the future drug design for 
PPAR receptors and the EC50 can be predicted by the corresponding model. 
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