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ABSTRACT 

 
Tuberculosis caused by Mycobacterium tuberculosis remains a pivotal cause of high mortality worldwide. Inhibitors 

of Mycobacterium tuberculosis lipase B hold promises for treating tuberculosis disease. Computer-aided drug 

design approaches have proven to be effective in speeding up the process of discovering potential therapeutic 

agents. Here, a combination of Quantitative Structure-Activity Relationship (QSAR) and molecular docking studies 

were carried out to investigate anti-tuberculosis potential of 2-Aminothiazole derivatives. A total of 39 2-

Aminothiazole derivatives were optimized using Density Function Theory (DFT) method with B3LYP via 6-31G* 

basis set. Using Genetic Function Algorithm (GFA) available in Material Studio a total of 5 QSAR models were 

developed.  The best model (model 1) was found to have the correlation coefficient, R2=0.9452, Radj=0.9322, the 

model strength, Q2=0.9203. The external validation test used for confirming the predictive power of the built model 

has R2
pred=0.6864, confirming that the model was robust, potentially highly predictive, and satisfactory. The 

molecular docking study between the ligand and the lipase B receptor (5X7K) showed that compounds 31 and 39 

bound to the enzyme with low binding energy values of -8.5 and -8.2 kcal/mol, respectively.  Taken together, the 

QSAR modelling and molecular docking results suggest that these scaffolds may be may be used as lead compounds 

for the design of new anti-tuberculosis agents. 
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INTRODUCTION 

Tuberculosis remains the deadliest infectious disease in the world, caused by mycobacterium tuberculosis which the 

bacteria responsible for the death of 1.5 million people every year [1]. Currently one-third of the world harbour the 

latent form of Mycobacterium tuberculosis, with a lifelong risk of activation and disease development, particularly 

in people co-infected with HIV [2]. It mainly affects the lungs and other parts of the body such as spine, kidney, and 

brain on prolong exposure [3]. There current drugs used for the treatment of tuberculosis include isoniazid, 

rifampicin, ciprofloxacin, pyrazinamide and ethambutol. The tedious duration of therapy and resistance developed 

by the pathogens are associated with recurrence of the disease, especially as MDR-TB and XDR-TB which pose a 

global challenge in tuberculosis chemotherapy [4]. 

It is believed that recent advances in computational chemistry could lead to development of a new drug [5]. 

Computational methods which reduce the cost for effective evaluation of large virtual data base of chemical 

compounds are currently employed in designing drug candidates. Some of such approaches include Quantitative 

Structure-Activity Relationships (QSAR) modeling, Artificial Neural Networks (ANN) analysis, complex networks 

theory and Machine Learning (ML) [6]. 

Quantitative structural activity relationship is a statistical model of correlation between a molecular descriptors and 

experimental activity of a given compound, these descriptors can be in form of either two or three dimension (2D or 

3D) [7]. The key success of the QSAR method is the possibility to predict the properties of new chemical 

compounds prior to synthesis and biological activity testing. This technique is broadly utilized for the prediction of 

physicochemical properties in the chemical, industrial, pharmaceutical, biological, and environmental spheres [8].  

Complimentarily, molecular docking is a computational method used to predict the binding mode of a ligand to a 

given receptor [9].  

Molecular docking studies have been applied to predict the binding affinities of different compounds and to clearly 

specify the areas of interaction between the ligands and the receptor [10]. QSAR and molecular docking together 

will give information that can be used in developing potential drug candidate [11]. Here, a potentially highly 

predictive QSAR model of 2-aminothiazole as potent anti-mycobacterium tuberculosis agents was developed. 

Compounds 31 and 39 were found to have the lowest interaction energy and may therefore serve as scaffolds for the 

design of new potent inhibitors of mycobacterium tuberculosis lipase B [12]. 

 
MATERIALS AND METHODS 

 
Datasets  

A total of thirty-nine (39) derivatives of 2-aminothiazole identified from the literature with the inhibitory activity 

(IC50) expressed in µM were retrieved. These compounds were converted to pIC50 [=-logIC50 × 106]) to reduce data 

dissemination and enhanced the linearity in the activity values. The structure of the compounds and their activities 

are shown in Table S1 [13]. 
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Geometry optimization  

The two-dimensional structure of the compounds were drawn using chemdraw 3D Pro 12.0.1V, software and the 

Spartan 14 v1.1.14 software was used to determine the conformation of the compounds. The structure of the 

compounds were first minimized by Molecular Mechanic Force Field (MMFF) to eliminated the strain energy, then 

the optimization  was performed using  Density Functional Theory (DFT) with B3LYP and 6-31G* basis set in 

Spartan software [14]. 

Descriptors calculation  

The thirty nine optimized molecules were saved in sdf form and the descriptors of the optimized compounds were 

calculated by using the descriptor toolkit of PaDEL software version 2.20 [15]. 

Data normalization and pre-treatment 

The values of the descriptors were normalized so as to give all the variables the equal chance of influencing the   

model. Noise and redundant data were removed by subjecting the data to pre-treatment [16]. 

 
Where X1 is the value of each descriptor for a given molecule, Xmax is the maximum value for all the column of the 

descriptor X, while Xmin is the minimum value for each column of descriptor X [17]. 

 

Training and test set 

The dataset was split into training set and test set with the aid of Kennard and Stone’s algorithm. The training set 

comprises 27 compounds and was used to build the model while the remaining 12 compounds serve as a test set 

used to validate the built model [18]. 

 

Internal validation 

Internal validation of the model was carried out using Materials Studio version 8 software, employing the Genetic 

Function Approximation (GFA) method. The models were estimated using the LOF. The LOF is measured using a 

slight variation of the original Friedman formula, so that the best fitness score could be received. LOF is expressed 

as follows: 

 

 
Where SEE means the standard error of estimation, C is defined as the number of terms in the model, d is a user 

smoothing parameter, p is the number of descriptors that appear in the model, and M is the amount of data in the 

training set. SEE is a measure of model′s quality-the lower the value of SEE the better the quality of the model [19]. 

SEE is defined as 

        

 
The square of the correlation coefficient (R2) measure the power of the model which explain how the activity values 

of the compounds used in building the model vary. A satisfied model has an R2 value of 1, and the more the value of 

the R2 deviate from 1, the more the robustness of the model reduces that  is the closer is the value of R2 to 1 the 

better the developed model [20].  
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Where Yexp, Ypre and Ttraining are the experimental, predicted and the mean experimental activities of the 

samples in the training set respectively. R2 values varies with increase in the number of descriptors, and this makes 

R2 unreliable in measuring the fitness of the model. Thus R2 is adjusted for all the number of variables in the model 

and it is defined as: 

 

 
Where k is the number of independent variables in the model and n represents the number of descriptors. The 

strength of the equation of QSAR to predict activity of a compound was assessed using leave-one-out cross-

validation method with the revised formula below: 

 
External validation 

Internal validation of a model is employed to evaluate the predictive ability and stability of the model, however, no 

real predictive capacity is shown for the external samples. This necessitates the need to ascertain the predictive 

ability externally and as well as extrapolation. The predictive R2 (R2 test) is calculated as follows: 

 
Where Ypred(test) and Yexp(test) are the predicted and experimental activity test sets respectively [21]. 

 

Applicability domain 

Applicability domain of a QSAR model is employed to determine outliers and influential compounds and to affirm 

the reliability and robustness of the model generated. The leverage is one of the most important techniques used to 

evaluate the applicability domain of the QSAR model, and for  a given chemical compound is defined as follows: 

                                            
Where xi is the training compound matrix I, X is n × k descriptor matrix of the training set compounds and XT is the 

transpose matrix X used to build the model. As a prediction tool, the warning leverage (h*) which is the limit for X 

values is defined as: 

 
Where n is the number of training compounds, and p is the number of descriptors in the model. 

 

Molecular docking studies 

The optimized compounds were converted into PDB format using spartan software. The structure of the enzyme 

(Lipase B) with the Protein Data Bank (PDB) code 5X7k was retrieved. Discovery studio software was used to 

prepare the protein based on the protonation state of the titratable residues; to delete water molecules and ions and to 

minimize the energy of the structure. 
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All the compounds were docked into the active site lipase B enzyme using Autodock vina 4.2 (PyRx) virtual 

screening software. The grid box centre and dimension were chosen automatically by the program. 

 

RESULTS AND DISCUSSION 

 

QSAR results  
 

The best model equation is given below: 

 

Model 1: 

 
The higher values of R2 (0.9452), R2

adj (0.9322) and Q2 (0.9203) of the model indicate the good assessment of the 

internal validation of the model. R2 for the assessment of external validation of the model for the test set was found 

to be 0.6864. Table S2 give the symbols, description and classes of the descriptors used in the model 1.  

Table 1 shows the external validation and calculation of the predictive R2 of model 1 (Table 1). 

 

Table 1: External validation of model 1. 

 

VE3_Dzp SpMax7_Bhv SpMax8_Bhv CrippenMR 
SpMin3

_Bhp 
pIC50 Yprd Yobs-Ypred (Yobs-Ypred)2 Ytrain 

Yobs-

Ytrain 
(Yobs-Ytrain)

2 

-3.70467 2.496073 2.153689 79.2887 1.549596 5.67 
5.9187

51 
24875 0.061877 5.32 0.35 0.1225 

-2.95077 2.476824 2.096006 76.2737 1.568992 6.09 
6.0533

53 
0.036647 0.001343 5.32 0.77 0.5929 

-3.59436 2.493238 2.134074 78.2787 1.469239 5.43 
5.0124

56 
0.417544 0.174343 5.32 0.11 0.0121 

-8.85959 2.477437 2.47895 96.9787 1.461846 5.61 
5.7220

49 
-0.11205 0.012555 5.32 0.29 0.0841 

-5.30468 2.464133 2.483333 95.7847 1.497212 5.53 
5.7872

8 
-0.2573 0.066193 5.32 0.21 0.0441 

-2.55742 2.405455 2.405455 76.3957 1.546924 5.55 
5.6951

4 
-0.14515 0.02107 5.32 0.23 0.0529 

-9.71179 2.445815 2.504837 101.4062 1.526405 6.15 6.6739 -0.5239 0.274478 5.32 0.83 0.6889 

-1.21909 2.291151 2.040559 73.5737 1.550146 5.85 5.9829 -0.1329 0.017654 5.32 0.53 0.2809 

-6.28138 2.412242 2.371706 85.9922 1.543622 5.92 6.271 -0.351 0.123183 5.32 0.6 0.36 

-6.91556 2.454399 2.478702 99.7622 1.508849 5.85 6.1911 -0.3411 0.116337 5.32 0.53 0.2809 

-4.15689 2.446377 2.47365 88.1165 1.545558 5.79 6.0378 -0.2478 0.061382 5.32 0.47 0.2209 

-3.40024 2.634041 2.359466 83.9327 1.556345 5.92 5.7158 0.20418 0.04169 5.32 0.6 0.36 

                

∑(Yobs-

Ypred)2 

=3.1002 

    
∑(Yobs-Ytrain)2 

=3.1002 

 

The plot of predicted activities of both training and test sets against experimental activities are shown in (Figure 1). 

The high linearity of the plot indicates the reliability of the model 1 which suggests its high predictive power. 
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Figure 1: The plot of the experimental and predicted activity of both the training and test sets for model 1. 
 

Similarly, a plot of experimental activity values against the standardized residuals was shown in Figure 2. 

Interestingly, the symmetric and random propagation of the standardized residuals of data points are on both side of 

zero and this means that there was no systematic error in the built model (Figure 2). 

 

 
Figure 2: Plot of standardized residual versus experimental activity. 

 

Furthermore, Table S3 shows the experimental and predicted activities with their residual values. The lower residual 

value between experimental and the predicted activities confirm the predictive ability and capacity of the model. 

The Williams plot of the standardized residuals versus leverages is presented in Figure 3. From the results, it is 

evident that one compound from the training set has the leverages high than the warning leverages (h*=0.66) and 

that is considered to be outlier compound, due to its different structure from the other compounds of the dataset. 
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Figure 3: Williams plot of standardized residual and leverages of both training and test sets of the model. 

 

Molecular docking results  

Molecular docking studies were carried out between the lipase B and the 39 compounds of 2-Aminothiazoles 

derivatives to predict their binding mode and binding energy scores. The binding energy values from -5.4 to -8.5 

kcal/mol, and the compounds 10, 26, 30, 31 and 39 were predicted to have the highest docking scores in ascending 

order. Compound 39 showed the lowest binding energy, -8.5 kcal/mol and formed hydrogen interaction with 

ARG480 (2.82796 Å), GLY405 (2.51971 Å) and GLY405 (3.21025 Å) active site. In addition, other interaction 

with active site residues residues, LYS401, LYS401, TRY410, PRO412, VAL379, LEU404, ILE408, PRO412, and 

PRO412 were observed (Table 2 and Figure 4). 

 

Table 3: Binding energy, interaction residues, hydrogen bonds and hydrogen bond distance of ligand with 

highest docking scores. 

 

Ligands 
Binding 
energy 

(kcal/mol) 
Interaction residues Hydrogen bond Hydrogen bond distance (Å) 

10 -8 ILE381,PRO412,TYR410,PRO412,ARG428,VAL379,ILE408 TYR410 2.8801 

26 -8 ARG480, PHE418, LYS401, VAL379, LEU404, ILE408 
ARG480,ARG428, 
LYS401,LYS401, 

ARG428 
2.68854,2.0322,2.27732,2.29581,2.35388 

30 -8 TYR410, ARG480, ASP402, LYS401, VAL379, ILE408 
ARG428, ARG428 

and ARG428 
2.32392,2.61343,2.63796 

31 -8.5 
LYS401, LYS401, TYR410, PRO412, VAL379, LEU404, 

ILE408, PRO412, and PRO412 
ARG480,GLY405, 

and GLY405 
2.82796,2.51971,3.21025 

39 -8.2 ARG480, ARG428, LYS401, VAL379, EU404, and ILE408 
ARG428,LYS401, 

and ARG428 
2.627,2.38907,and 

2.37479 
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Figure 4: a) 3D and b) 2D interaction diagrams of predicted complexes of lipase B with compound 31 (binding 

energy=-8.5 kcal/mol); c) 3D and d) 2D interaction diagrams of predicted complexes of lipase B with compound 

39 (binding energy=-8.2 kcal/mol). 

 

DISCUSSION 

 
QSAR was performed to investigate the structure activity relationship of the inhibitory compounds as potent anti-

mycobacterium tuberculosis. In this study  the R2 value recorded in the predicted activity against experimental 

activity  of both training and test set shown in Figure 1 were in agreement with GFA derived R2 value reported by 

other [25]. The plot of standardized residual verses experimental activity shown in Figure 2 indicates that there was 

no systematic error in the model built as the spread of standardized residual values were on both sides of zero [26] 

and the Williams plot of the standardized residuals shown in figure.3 were in agreement with the finding of other 

[27] with the applicability domain of the square area of ± 3 and the warning leverage of (h*=0.66). The molecular 

docking result in this research has shown that the binding score was in agreement  with finding of other researcher  

which were better than the commercially sold anti-mycobacterium tuberculosis; isoniazid (-5.3 kcal/mol) and 

enthambutal (-5.8 kcal/mol). 

 

CONCLUSION 

 

QSAR and molecular docking studies of a total of 39 compounds of 2-aminothiazoles derivatives as lipase B 

inhibitors were performed. The Genetic Function Algorithm (GFA to build a total of five models. The best model 

was found to have R2=0.9452, Radj=0.9322, Q2=0.9203 and the external validation R2
pred=0.6864. From the 

molecular docking studies carried out shows that all the compounds binding with target receptor favourably. Ligand 
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31 has the highest binding energy of -8.5 kcal/mol showed hydrogen interaction with ARG480 (2.82796 Å), 

GLY405 (2.51971 Å) and GLY405 (3.21025 Å) active site and form interaction residues with active site of the 

receptor LYS401, LYS401, TRY410, PRO412, VAL379, LEU404, ILE408, PRO412, and PRO412.The QSAR 

model generated provides a valuable approach for ligand base design, while molecular docking studies give the 

valuable for structure base design. These two approaches will significantly help pharmaceutical and medicinal 

chemist to design new anti-Mycobacterium tuberculosis agent. 
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