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Abstract 
 
QSAR (Quantitative Structure Activity Relationship) studies were carried out on a set of 61 N-
(2-aryl-cyclohexyl) and N-(2-hydroxy-2-aryl-cyclohexyl) substituted spiropiperidines as GlyT1 
inhibitors (Glycine Transporter1) using multiple regression procedure. The activity contributions 
of these compounds were determined from regression equation and the validation procedures 
such as external set cross-validation r2 (R2

cv,ext) and the regression of observed activities against 
predicted activities and vice versa for validation set were described to analyze the predictive 
ability of the QSAR model. An accurate and reliable QSAR model involving six descriptors was 
chosen based on the FIT Kubinyi function. Applicability domain of QSAR model such as 
leverages, y-randomization test and RMSE (Root Mean Square Error) of training and validation 
set were reported. 
 
Keywords: Multivariate analysis; Molecular diversity; Physico-chemical properties.  
______________________________________________________________________________ 
 
Introduction 
 
Several new antipsychotic drugs have been introduced in the last decade that promised to treat 
schizophrenia than others without unwanted side effects [1]. Schizophrenia is characterized by 
failures in nearly all aspects of higher-order behavior such as disruption of information 
processing and sensory perception, abnormal mood and personal hygiene, cognitive impairments 
including attention, short-term memory, and behavioral flexibility and certain movement 
abnormalities as well [2]. It has been postulated that enhancement of glutamate transmission, in 
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particular, N-methyl-D-aspartate (NMDA) receptor activation, produces both anti-psychotic and 
cognitive enhancing effects, thus constituting a potential therapeutic target for the treatment of 
schizophrenia, psychoses and cognitive impairment [3-7]. Some of the potential targets for 
pharmacological intervention in schizophrenia include the glycine and D-serine binding site on 
the NR1 subunits of the NMDA receptor, the Glycine Transporter (Gly T), and potentiators of 
metabotropic glutamate (mGlu) receptors, in particular mGlu5, which positively modulates 
NMDA receptors through activation of the G protein Gq, and mGlu2/3, which regulate the 
release of glutamate [2]. NMDA receptors are complex, abundant, ubiquitously distributed 
throughout the brain and activation requires both glutamate and glycine binding to open the ion 
channel and permit the calcium entry. Glutamate, released from pre-synaptic terminals, has the 
neurotransmitter role whereas glycine which is present in the extracellular fluid acts as a 
modulator. Evidence indicates that potentiating NMDA receptor should be beneficial for treating 
cognitive disorders and schizophrenia [8]. Moreover, activation of the glycine site has shown 
some clinical benefit. Apart from normal antipsychotic therapy, addition of glycine or other 
glycine site agonists, D-seine and D-cycloserine were reported to show efficacy in treating 
schizophrenia [9]. However, few companies have focused on another approach to increase 
extracellular levels of glycine by blocking glycine re-uptake into neurons through the inhibition 
of GlyT1 transporter [10]. GlyT1 is the only sodium chloride dependent glycine transporter in 
the forebrain, co-expressed with the NMDA receptor. GlyT1 is thought to be responsible for 
control of extracellular level of glycine at the synapse. Several groups have focused their efforts 
in developing selective GlyT1 inhibitors [11] and a variety of non-amino acid GlyT1 inhibitors 
were reported [12]. 
 
Quantitative Structure activity relationship (QSAR) studies delineate the structural requirements 
for potency of inhibitors. QSAR studies have been investigated on the basis of the fact that the 
biological activity of the compound is a function of its physicochemical properties. From 
literature, it was observed that very few attempts were made to build QSAR models of GlyT1 
inhibitors. In this paper, we report QSAR studies on N-(2-aryl-cyclohexyl) substituted 
spiropiperidines as GlyT1 inhibitors to investigate the influence of molecular structure on 
biological activity. Several validations were reported which state the robustness and domain 
applicability of the model. 
 
Materials and Methods 
 
To obtain a reliable and robust QSAR model, it is desirable to consider a large data set that 
covers reasonable chemical diversity and biological activity. Hence, a set of 61 compound 
biological data was taken from 2 references [13, 14]. The structures along with bioactivities are 
given in Table I. The inhibitory activities of these derivatives reported in terms of IC50 in µM 
were transformed into their corresponding concentration values in order to overcome 
overlapping data. Therefore, to guarantee the linear distribution of data, the enzyme inhibition 
was converted to negative logarithmic values and then used for subsequent QSAR analysis. The 
structures were sketched using ISIS Draw 2.3 (www.mdli.com) software and the descriptors 
were calculated using Tsar 3.3 software (www.accelrys.com). Before the calculation of 
descriptors, three dimensional structures of all molecules were generated using Corina 3D 
package, charges were derived and the geometries optimized using cosmic module of Tsar. 
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Table I: Structure and biological activities of compounds 

 

ID Compound name EC50 (µµµµM) 
Molecular 

Mass 
Molar conc. 

log(C) 

N

N
H

N

O

 
1 (cis,rac) 0.026 389.59 -7.176 
2 (trans,rac) 0.073 389.59 -6.727 
3 (cis, 1R,2R) 0.004 389.59 -7.988 
4 (cis,1S,2S) 0.380 389.59 -6.010 

N

N
H

N
R

O

 

5 
cis-2-phenyl-cyclopent-

1yl 
1.1 375.56 -5.533 

6 
cis-2-phenyl-cyclohept-

1yl 
1.7 403.57 -5.375 

7 
1,1-dimethyl-2-phenyl-

ethyl 
9.3 363.55 -4.592 

8 2-methyl-2-phenyl-propyl 7.3 363.55 -4.697 

N

N
H

N

R

O

 
9 4-F-Ph 0.023 407.58 -7.248 
10 4-Cl-Ph 0.040 424.03 -7.025 
11 4-Me-Ph 0.085 403.62 -6.676 
12 4-MeO-Ph 0.610 419.62 -5.837 
13 3-Cl-Ph 0.130 424.03 -6.513 
14 3,4-Cl 2 -Ph 0.067 458.47 -6.835 
15 3-CF 3 ,4-Cl-Ph 1.8 492.03 -5.436 
16 2-Me-Ph 0.510 403.62 -5.898 

    17 2-Py 6.6 390.53          -4.772 
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N

N
H

N

O

R

 
18 4-F-Ph 0.024 407.58 -7.232 
19 4-Cl-Ph 0.027 424.03 -7.196 
20 4-CF 3 -Ph 0.065 457.59 -6.847 
21 4-MeO-Ph 0.066 419.62 -6.803 
22 4-Me-Ph 0.055 403.62 -6.865 
23 Et 6.6 341.55 -4.713 
24 nPr 0.450 355.58          -5.897 
25 nPent 0.034 383.64 -7.052 
26 nHex 0.049 397.67 -6.909 
27 cPr 3.3 353.56 -5.029 
28 cBu 1.5 367.59 -5.389 
29 cPent 0.63 381.62 -5.782 
30 cHex 0.75 395.65 -5.722 
31 CH 2-cHex 0.065 409.68          -6.799 
32 CH 2 CH2 -cHex 0.025 423.71 -7.229 
33 CH 2 -Ph 0.258 403.62 -6.194 
34 CH2CH2-Ph 0.025 417.65 -7.222 
35 CH2CH2-OMe 5.3 371.58 -4.845 

N

N
H

N

O

 
36 (cis,rac) 0.026 389.59 -7.175 
37 (trans,rac) 0.073 389.59 -6.727 

N

N
H

N

O

OH

 
38 (trans,rac) 0.056 405.59 -6.859 
39 (cis,rac) 0.044 405.59 -6.964 
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N

N
H

OH
N

R1

O

R2  
40 4-MeO-Ph H 0.261 435.62 -6.222 
41 4-Me-Ph H 0.140 419.62 -6.479 
42 4-Cl-Ph H 0.080 440.03 -6.740 
43 3,4-Cl2 –Ph H 0.173 474.47 -6.438 
44 4-F-Ph H 0.040 423.58 -7.024 
45 2-Me-Ph H 0.050 419.62 -6.923 
46 3-Cl-Ph H 0.130 440.03 -6.529 
47 3-Me-Ph H 0.130 435.62 -6.525 
48 3-MeO-Ph H 0.130 435.57          -6.525 
49 2-Py H 0.130 406.58 -6.495 
50 3-Py H 0.110 406.58 -6.567 
51 4-Py H 0.062 406.58 -6.816 
52 Me H 9 343.52 -4.581 
53 t-Bu H 29 385.61 -4.123 
54 4-F-Ph F 0.024 441.57 -7.264 
55 4-F-Ph Cl 0.015 458.02 -7.484 
56 4-Cl-Ph F 0.024 458.02 -7.280 
57 4-Cl-Ph MeO 0.099 470.06 -6.676 

N

N
H

O

OH
N

O

 
58 (cis,rac) 0.058 407.56 -6.846 

N

N
H

O

OH
N

O

 
59 (cis,rac) 0.090 407.56 -6.655 
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N
N

N
HO

 
60 - 0.45 355.58 -5.897 

N
N

N
HO

OH

 
61 - 0.40 371.58 -5.967 

 
Multivariate Regression Analysis 
QSAR models were constructed on complete and training sets, respectively. Validation was done 
internally using leave-one-out (LOO) technique and externally by predicting the activities of 
validation set. The relationship between dependent variable (logC) and independent variables 
was established by linear multiple regression analysis using Tsar. Significant descriptors were 
chosen based on the statistical data of analysis. Statistical quality of the generated QSAR 
equation was judged based on the parameters like correlation coefficient (r), standard error of 
estimate (s), F-value, cross-validation r2 (q2) and predictive residual sum of squares (PRESS). 
Cross-validation was calculated using leave-one-out (LOO) technique over 2 random trials with 
F to leave and F to enter being 2 in F stepping to include the most significant variables in 
generating the QSAR model. 
 
Thirty five molecular descriptors were selected for the study: topological, shape and connectivity 
indices, total dipole and lipole, molecular weight, h-bond donors, h-bond acceptors, logP and 
rotatable bond counts. A semi-empirical molecular orbital package was used to calculate 
thermodynamic property like heat of formation and electrostatic properties like HOMO (Highest 
Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital). 
 
Predictive Ability of QSAR model 
Predictive ability of the generated model was estimated externally by predicting the activities of 
validation set. This criterion may not be sufficient for a QSAR model to be truly predictive [15]. 
An additional condition for high predictive ability of QSAR model is based on external set cross-
validation r2, (R2

cv,ext) and the regression of observed activities against predicted activities and 
vice versa for validation set, if the following conditions are satisfied [15, 16].                      
 

R2
cv,ext  >   0.5                                                        (1) 

         R2    >   0.6                                        (2) 
                               (R2 – R0

2) / R2 < 0.1 or   (R2 – R0
’2) / R2 < 0.1               (3) 

                               0.85 ≤ k ≤ 1.15 or 0.85 ≤ k’ ≤ 1.15                  (4) 
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Calculations relating to R2cv,ext, R0
2 and the slopes, k and k’ are based on regression of observed 

values against predicted values and vice versa [15]. 
 
Applicability Domain of QSAR Model 
Applicability domain of a QSAR model must be defined if the model is to be used for screening 
new compounds. Predictive ability of the model may be considered reliable for compounds that 
fall into this domain [16]. One simple approach is based on y-randomization and the calculation 
of leverage for each chemical compound used in the study. 
 
Y-randomization 
This test ensures the robustness of a QSAR model [17] and to assess the multiple linear 
regression models obtained by descriptor selection [18]. In y-randomization test, the dependent 
variable or y-data is randomly shuffled and a new QSAR model is developed keeping X-data 
intact. The new models are expected to have low R2 and Q2 values, which determine the 
statistical significance of the original model. Moreover, if the model development includes F-
stepping, then it is necessary to shuffle both dependent and independent variables to indicate that 
the original model is not because of chance correlation. 
 
Leverage Test 
Leverage values refers to the diagonal elements of the hat matrix H = (X (X’X)–1X’). A given 
diagonal element (h [ii]) represents the distance between the X value for the ith observation and 
the means of all X values. Leverages measure the distance of an observation from the centre of a 
set of X observations [19]. A leverage value, hii, greater than 3p/n is usually considered large 
(where p is the number of parameters in the model plus constant and n is the number of 
observations). If high leverage points fit the model well (i.e. have small residuals), they are 
called “good high leverage points” or good influence points. Such points stabilize the model and 
make it more precise. High leverage points, which do not fit the model (i.e. have large residuals) 
are called “bad high leverage points” or bad influence points [19]. 
 
Results and Discussion 
 
Multivariate regression analysis with F stepping (F to enter and F to leave being 2) and cross-
validation by leaving-out-one row, to test the predictive power, resulted in Kappa2 index, Kier 
chi4 (cluster index), Kier chiV3 (cluster index), H-bond donors and H-bond acceptors as the 
most significant descriptors. Equation 5 represents the linear QSAR model from a complete set 
of 61 GlyT1 inhibitors. 
 
log (C) = + 1.044 *Kier chiV3  

+ 3.652 * Kier chi4 
   - 0.725 * Kappa2 index 
   + 0.614 * H-bond acceptors 
   - 1.533 * H-bond donors 
   - 1.131 
r =0.876, r2 = 0.767, q2 =0.865, F = 33.616, n = 61,  
PRESS = 5.170, s = 0.418                                                 (5) 
 
A new QSAR model was attempted by dividing the set as a 50 molecule training set and a 7 
molecule validation set (Table II). More specifically, the selection of molecules in the training 
set was made according to the biological action and molecular structure, so that representatives 



Ajay Babu Padavala et al                                         J. Chem. Pharm. Res., 2010, 2(2): 147-162 

_____________________________________________________________________________ 

154 

 

of a wide range of structures with different substituents, atoms and activity were included. The 
distribution of activity values for the validation set follows the similar distribution of the activity 
values for the training set [20]. 
 
Table II:  Logarithmic molar concentration values of complete, training and validation set 

and descriptor values of the proposed QSAR model (Eq. 7). 
 

ID 
Activity 
log(C) 

Complete 
Setb  

log (C) 

Training 
Setc  

log (C) 

Validation 
Setd  

log (C) 

Balaban 
topological 

index 

Molecular 
Refractivity 

Kappa
2 index 

H-bond 
Donors 

H-bond 
Acceptors 

Kier 
Chi4 

1 
-7.176 -6.738 -6.812 

---- 
1.161 116.481 9.24 1 2 0.083 

2 
-6.727 -6.738 -6.812 

---- 
1.161 116.481 9.24 1 2 0.083 

3 
-7.988 -7.189 -7.012 

---- 
1.161 116.481 9.24 1 2 0.083 

4 
-6.011 -6.738 -6.812 

---- 
1.161 116.481 9.24 1 2 0.083 

5 
-5.533 -6.292 -6.350 

---- 
1.175 111.88 8.63 1 2 0.083 

6 

-5.375 -5.154     -5.241 
---- 

1.196 121.08 9.86 1 2 0.055 

7 a 
-4.592 -4.674       ---- 

-4.637 
1.320 109.324 8.39 1 2 0.287 

8 
-4.697 -4.595 -4.747 

---- 
1.301 109.138 8.39 1 2 0.287 

9 
-7.248 -6.838 -7.049 

---- 
1.172 116.697 9.47 1 2 0.083 

10 
-7.025 -6.696 -6.611 

---- 
1.172 121.286 9.47 1 2 0.083 

11 
-6.676 -6.730 -6.588 

---- 
1.172 121.522 9.47 1 2 0.083 

12 
-5.838 -6.671 -6.628 

---- 
1.162 122.944 10.09 1 3 0.083 

13 
-6.513 -6.696 -6.628 

---- 
1.168 121.286 9.47 1 2 0.083 

14 
-6.835 -6.711 -6.485 

---- 
1.168 126.09 9.70 1 2 0.083 
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15 
-5.437 -6.129 -6.030 

---- 
1.158 127.259 10.40 1 2 0.372 

16 
-5.898 -6.767 -6.496 

---- 
1.191 121.522 9.47 1 2 0.083 

17 
-4.772 -4.845 -4.235 

---- 
1.161 114.007 9.24 1 3 0.055 

18 
-7.230 -6.838 -7.119 

---- 
1.157 116.697 9.47 1 2 0.083 

19 
-7.196 -6.696 -6.681 

---- 
1.157 121.286 9.47 1 2 0.083 

20 
-6.847 -6.128 -6.226 

---- 
1.147 122.454 10.17 1 2 0.372 

21 
-4.697 -6.671 -6.689 

---- 
1.149 122.944 10.09 1 3 0.083 

22a 

-7.248 -6.730      ----- 
- 6.659 

1.157 121.522 9.47 1 2 0.083 

23 
-7.025 -5.221 -5.015 

---- 
1.316 101.451 7.94 1 3 0.083 

24 
-6.676 -5.679 -5.446 

---- 
1.314 105.975 8.57 1 3 0.083 

25 
-5.838 -6.625 -6.442 

---- 
1.292 115.177 9.87 1 3 0.083 

26 
-6.513 -7.113 -6.997 

---- 
1.275 119.778 10.54 1 3 0.083 

27 
-6.835 -4.748 -4.777 

---- 
1.176 103.914 7.44 1 3 0.083 

28a 

-5.437 -5.173      ----- -5.129 1.177 108.515 8.02 1 3 0.083 

29a 

-5.898 -5.609       -----     -5.531 1.172 113.116 8.63 1 3 0.083 

30 
-4.772 -6.054 -5.977 

---- 
1.161 117.717 9.24 1 3 0.083 

31 
-7.230 -6.410 -6.494 

---- 
1.136 122.448 9.87 1 3 0.083 

32 
-7.196 -6.874 -7.034 

---- 
1.112 127.126 10.51 1 3 0.083 

33 
-6.847 -6.500 -6.602 

---- 
1.137 121.316 9.87 1 3 0.083 
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34 
-7.222 -6.964 -7.135 

---- 
1.112 126.07 10.51 1 3 0.083 

35 
-4.846 -5.533 -5.476 

---- 
1.306 107.747 9.21 1 4 0.083 

36 
-7.176 -6.738 -6.769 

---- 
1.170 116.481 9.24 1 2 0.083 

37 
-6.727 -6.738 -6.731 

---- 
1.178 116.481 9.24 1 2 0.083 

38 
-6.860 -6.921 -6.936 

---- 
1.195 117.778 9.09 2 3 0.201 

39 
-6.965 -6.921 -6.936 

---- 
1.195 117.778 9.09 2 3 0.201 

40 
-6.222 -6.843 -6.702 

---- 
1.202 124.241 9.93 2 4 0.201 

41 
-6.480 -6.918 -6.696 

---- 
1.211 122.819 9.33 2 3 0.201 

42 
-6.740 -6.884 -6.719 

---- 
1.211 122.583 9.33 2 3 0.201 

43 
-6.438 -6.904 -6.595 

---- 
1.208 127.387 9.57 2 3 0.201 

44 
-7.025 -7.026 -7.156 

---- 
1.211 117.994 9.33 2 3 0.201 

45 
-6.924 -6.953 -6.602 

---- 
1.231 122.819 9.33 2 3 0.201 

46 
-6.530 -6.884 -6.736 

---- 
1.208 122.583 9.33 2 3 0.201 

47 
-6.525 -6.843 -6.734 

---- 
1.196 124.241 9.93 2 4 0.201 

48 
 -6.525      -6.011 -6.025 

---- 
1.184 125.33 9.93 2 4 0.108 

49a 

-6.495 -6.326       ----- 
-6.361 

1.216 115.249 9.09 2 4 0.201 

50 
-6.567 -6.307 -6.328 

---- 
1.216 115.589 9.09 2 4 0.201 

51 
-6.817 -6.307 -6.328 

---- 
1.216 115.589 9.09 2 4 0.201 

52 
-4.582 -5.061 -5.009 

---- 
1.372 97.9131 7.20 2 3 0.287 
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53 
-4.124 -3.997 -3.956 

---- 
1.387 111.307 7.92 2 3 0.435 

54 
-7.264 -7.132 -7.573 

---- 
1.187 118.211 9.57 2 3 0.201 

55 
-7.485 -6.990 -7.136 

---- 
1.187 122.799 9.57 2 3 0.201 

56a 

-7.281 -6.990       -----   
-7.136 

1.187 122.799 9.57 2 3 0.201 

57 
-6.677 -6.805 -6.676 

---- 
1.178 129.046 10.17 2 4 0.201 

58 
-6.847 -6.307 -6.486 

---- 
1.195 114.975 9.09 2 4 0.201 

59 
-6.656 -6.307 -6.420 

---- 
1.209 114.975 9.09 2 4 0.201 

60 
-5.898 -5.679 -5.446 

---- 
1.315 105.975 8.57 1 3 0.083 

61a 

-5.968 -5.842        ----- 
-5.466 

1.363 107.272 8.39 2 4 0.201 
a Validation set molecules. ; b Calculated values from Equation 5; c Calculated values from Equation 7 
d Predicted values from Equation 7 
 
Cross-validation was performed using leave-one-out (LOO) technique over 2 random trials with 
F to enter and F to leave being 2 in F stepping to include the most significant variables in 
generating the QSAR model. The results obtained from the multiple linear regression procedure 
with varied number of descriptors are shown in Table III with their statistics (Eqs. 6-8). 
 

Table III: Descriptor data and statistical values of 5, 6 and 7 variable model equations 
 

Descriptor 

Coefficient 

5-variable 
model 

6-variable 
model 

7-variable 
model 

Balaban index - +4.803 +5.257 
Molecular refractivity - +0.095 +0.131 
Kappa2 index -1.210 -1.355 -1.498 
H-bond donors -1.672 -1.872 -2.024 
H-bond acceptors +0.673 +0.717 +0.771 
Kier ChiV2 path - - -0.271 
Kier ChiV0 atoms +0.334 - - 
Kier Chi4 index +4.860 +4.634 +5.001 
Intercept -1.373 -10.93 -11.871 
Statistics  
R 0.859 0.884 0.888 
r2 0.737 0.780 0.788 
q2 0.717 0.693 0.682 
F 24.686 25.527 22.418 
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N 54 54 54 
PRESS 9.185 9.943 10.32 
s 0.440 0.407 0.404 
Equation No. 6 7 8 

FIT Kubinyi function  
All the three models passed the conditions for validation sets (Eqs.1-4, Table IV). Further, to 
define the statistical quality of activity prediction, the number of variables that enter in a QSAR 
model are compared by using FIT Kubinyi function (Eq. 9), a criteria closely related to F value 
was proven to be useful [21].  
 

FIT = R2 (n – k – 1) / (n + k2) (1 – R2)           (9) 
 
Where n is the number of compounds in training set and k is the number of variables in the 
QSAR equation. 
 

Table IV: Predictive ability of validation sets consisting of 5, 6 and 7 variables 
 

Vara R2
cv,ext R2 k K’  Eqb Eqc 

5 0.636 0.887 1.038 0.963 0.013 0.001 

6 0.792 0.967 1.035 0.966 0 0.001 

7 0.828 0.975 1.033 0.968 0.001 0.004 

                          a
 number of significant variables;   b (R2 – R0

2) / R2 

                                      c (R2 – R0’
2) / R2

 

 
The main feature of F value is its sensitivity to changes in k, if k is small and its lower sensitivity 
if k is large. The FIT criterion has a low sensitivity towards changes in k values, as long as they 
are small numbers, and a substantially increasing sensitivity for large k values [22]. The best 
model will be the one that possess a high value of this function. Hence, QSAR models with five, 
six and seven variables are generated (Table V) to choose the best among them. 
 

Table V: Statistical parameters of the regression models obtained for five, six and seven 
variables. 

 

Vara r2 s F FIT Eq No. 

5 0.737 0.440 24.686 1.702 6 

6 0.780 0.407 25.527 1.851 7 

7 0.788 0.404 22.419 1.660 8 
a number of significant variables 

 
According to the statistical values of the models reported in Table V, we chose the model with 
six variables since this showed high FIT than others. The observed, calculated and predicted 
values of the statistically significant six parameter QSAR model (Eq. 7) are presented in Table 
II.  
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Equation 7 accounts for the significant correlation of descriptors with biological activity and 
displayed good internal predictivity as shown by q2 value of 0.693 and was able to explain 78.0 
% variance of inhibitory activities of derivatives. The predictive residual sum of squares and the 
standard error of estimate are 9.943 and 0.407 respectively. Observed verses predicted values of 
molecules in training and validation set are shown graphically in Fig. 1. The proposed QSAR 
model Eq. 7 illustrated the predictive ability of Eqs. 1-4 and depicted graphically in Figs. 2 and 
3. 
 
 
 
  
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 1:  Observed and predicted values of molecules in training and validation set 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

Fig. 2: Regression plot between observed vs. predicted values of compounds from 
validation set justifying the predictive ability of QSAR model Eq. 7 
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Fig. 3: Regression plot between predicted vs. observed values of compounds from 

validation set justifying the predictive ability of QSAR model Eq. 7 
 
The model was further validated by applying the y-randomization test. As the model selection 
included F-stepping, several random shuffles of the dependent as well as independent variables 
were performed and the results are shown in Table VI. The low R2 and Q2 values indicate that 
the results obtained in our original model (Eq. 7) are not due to chance correlation. Alternatively,   
Table VII given below represents the leverage values of training and validation sets. RMSE of 
training and validation sets were calculated based on Euclidean distance method using Ambit 
software and the values are within the limits, RMSE for training set is 0.37 and RMSE for 
validation set is 0.04, respectively. 
 
Interpretation of Descriptors 
A brief explanation of the descriptors that were utilized to generate the statistical QSAR model:  
From Eq. 7 it can be observed that the Balaban topological index, molecular refractivity, H-bond 
acceptors and Kier Chi4 index properties has positive contribution towards GlyT1 inhibition. 
Topological index can be used to evaluate structural similarity and diversity and describes the 
nature of atoms and bond multiplicity such as atomic order (Z), relative eletronegativity (X), 
length of covalent radius (Y), atomic mass (A), atomic and adjacent hydrogen mass (AH), 
atomic polarity (P), atomic radius (R), and atomic eletronegativity (E) [23, 24]. The Balaban 
index, J, is the average-distance sum connectivity [25] and measures the ramification which 
tends to increase with molecular ramification [26].  
 
Molar refractivity is a measure of steric factors, a constitutive-additive property, may be treated 
as the additive sum of contributions of constituent structural fragments, and a measure of the 
volume occupied by a group of atoms. Molar refractivity increases as the formula weight and 
molar volume increases, indicating the concurrent increase in steric effects [27]. Therefore, Eq. 7 
suggests that better GlyT1 inhibition can be achieved with an increase in molecular refractivity 
and Balaban index with an increase in molecular structure by substituting groups that increase 
steric property on spiropiperidine moiety. 
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Most of the studied inhibitors contain halogen groups like Cl, F and are known to act by forming 
H-bonds with the acceptor residues within the active site region. Negative correlation of H-bond 
donor term with activity indicates lower the number of H-bond donor groups in the molecule, 
more active it would be. On the other hand, Eq. 7 defines that increase in acceptor groups is 
favorable for Gly T1 activity. Therefore, designing new analogs with decrease in H-bond donor 
atoms with introduction of few acceptor atoms on the basic scaffold would increase Gly T1 
inhibition. 
 
On the other hand, a high value of Kappa2 index represents a negative contribution to the 
activity. The Kappa index [28] is a molecule shape index based on the assumption that the shape 
of a molecule is a function of the number of atoms and their bonding relationship. Kappa 1 
shows the degree of complexity of a bonding pattern. Kappa 2 indicates the degree of linearity of 
bonding patterns. Kappa 3 indicates the degree of branching at the centre of a molecule, larger 
for predominantly linear molecules with branching at the ends. Equation 7 suggests that a high 
value of kappa2 index decreases the activity, in other words, the degree of linearity of bonding 
patterns should be modified by introducing groups that enhance H-bond acceptors and by 
reducing H-bond donor property with a concomitant increase in molecular structure on 
spiropiperidines increases Gly T1 inhibition. 
 
Hall and Kier [29] have developed molecular connectivity indices (Chi) that reflect the atom 
identities, bonding environments and number of bonding hydrogens. Hall and Kier defined four 
series of fragment categories: Path, Cluster, Path/Cluster, and Ring. Moreover, the size, 
branching, unsaturation, cyclic and chemical nature of various chemical species are determined 
by molecule connectivity. Therefore, an increase in Kier Chi4 path/cluster index can be achieved 
by increasing the size and branching order on the basic skeleton.  
 
Conclusion 
 
The generated QSAR model on the data set with reasonable chemical diversity and biological 
activity demonstrated a promising method and the six descriptors [Balaban Topological index, 
Molecular refractivity, Kappa2 index, Kier chi4 (cluster) index, H-bond donors and H-bond 
acceptors] were found to be important in describing the GlyT1 inhibition. The predictive abilities 
and the internal and external validation procedures illustrated the accuracy of the model. This 
work indicates that accurate predictions can be achieved with few computational efforts in a 
relatively short time and the procedure described can be extended to study the receptor-ligand 
interactions based on QSAR. Various validation procedures described in the paper demonstrate 
the robustness of the QSAR model. 
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