# Journal of Chemical and Pharmaceutical Research, 2014, 6(5):1286-1294



**Research Article** 

ISSN: 0975-7384 CODEN(USA): JCPRC5

# Preparation, characterization, and antibacterial properties of mixed ligand complexes of L-aspargine and sulfamethoxazole(antibiotic) with Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) ions

# \*Taghreed H. Al-Noor, \*\*RaheemTaher Mahdi and \*\*\*Ahmed H. Ismael

Chemistry Department, Ibn -AI-Haithem College of Education, University of Baghdad, Iraq Chemistry Department, College of Science, Al-Mustansiriyah University, Iraq

## ABSTRACT

The research includes the synthesis and identification of the mixed ligands complexes of  $M^{+2}$ ions in general composition[ $M(Asn)_2(SMX)$ ] Where L- Aspargine ( $C_4H_8N_2O_3$ )symbolized (AsnH) as a primary ligand and Sulfamethoxazole( $C_{10}H_{11}N_3O_3S$ ) symbolized (SMX) as a secondary ligand. The ligands and the metal chlorides were brought in to reaction at room temperature in(v/v) ethanol /water as solvent containing NaOH. The reaction required the following [(metal:  $2(Na^+Asn^-)$ : (SMX)] molar ratios with M(II) ions, Where: M(II)=Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II). The UV–Vis and magnetic moment data revealed an octahedral geometry around M(II), The conductivity data show a non-electrolytic nature of the complexes. The antimicrobial activities of ligands and their mixed ligand complexes were screened by disc diffusion method.

Keywords: Sulfamethoxazole, L- Aspargine, Mixed ligand, Metal complexes, Antimicrobial activity.

## INTRODUCTION

Chemistry of drugs attracts many researchers because of its application in medicinal study. The metal complexes of drugs play an important role in drug action and metabolism. Metal complexes are widely used in various fields, such as biological processes, pharmaceuticals, separation techniques, analytical processes etc.Survey of literature reveals that no systematic study of complexes of metal ion with antibacterial drugs and amino acids had been reported[1-4].

Asparagine(figure 1- Formula 1) is one of the 20 most common natural amino acids. It has carboximide as the side chain's functional group. Its molecular formula is  $C_4H_8N_2O_3$ . The nervous system requires asparagine. It also plays an important role in the synthesis of ammonia.[1-2]

During the recent years , there has been significant interest in the coordination chemistry , the structural properties and the reactivity of metal complexes of amino acids .[3-.4]

Rey and Co-worker. [5]investigated the complexation equilibrium of L-Serine and L-Leucine with Ca(ll), Mg(ll), Co(ll), Ni(ll), Cu(ll), Zn(ll),Cd(ll) and Pb(ll) at 25°C, I=0.1M KNO<sub>3</sub> in various ethanol-water media. The equilibrium constants of the complexes formed were discussed in terms of the acid-base characteristics of the amino acids and the properties of the cationsconcerned.[2-5].The derivatives of some amino acids function as drugs. L-Levodopa, a laevorotatory isomer of 3-(3,4-dihyroxy phenyl)L-alanine, is well known for its involvement in neurotransmission process and in the treatment of Parkinson''s Disease.[6].Sulfamethoxazole ( $C_{10}H_{11}N_3O_3S$ ) (Systematic (IUPAC) name= 4-amino-N-(5-methylisoxazol-3-yl)-benzenesulfonamide( figure 1- Formula 2) is a sulfonamide bacteriostatic antibiotic. A complex of sulfamethoxazole (SMX) and hydroxypropyl- $\beta$ -cyclodextrin

(HP- $\beta$ -CD) was developed and characterized in order to investigate their interactions in aqueous solution and the solid state. [7]



The synthesis, characterization and comparative biological study of a series of antibacterial Mn(II),Co(II),Ni(II),Cu(II),Zn(II),Cd(II) and Hg(II)complexes with heterocyclic sulfamethoxazole and amino acids(L-leucine) were reported. [8]Trimethoprim-sulfamethoxazole(TMP-SMX) has the most potent and reliable *in vitro* activity

against*S. maltophilia*[9,10].Co-trimoxazole exhibiting more than 90% susceptibility *in vitro*hence it remains the most effective agent against *S. maltophilia*infections, [9]. The mechanisms of resistance to TMP-SMX is not well understood. These isolates were resistant*in vitro* to imipenem and aminoglycoside and  $\beta$ -lactam antibiotics [11].

Literature survey shows that no studies on the synthesis and characterization of mixed ligand complexes of L-Aspargine and Sulfamethoxazole(antibiotic) have been reported. In this paper we present the synthesis and study of Mn(II),Co(II),Ni(II),Cu(II),Zn(II),Cd(II) and Hg(II)complexes with amino acid (L-Aspargine) as a primary ligand andSulfamethoxazole(antibiotic) as a secondary ligand.

#### **EXPERIMENTAL SECTION**

#### 2.1. Materials and instruments

a-Allchemicals were purchased from Merck / Aldrich. The reagents were used without further purification .Double distilled water was used. b- Instruments: FT-I.R spectra were recorded as KBr discs using Fourier transform Infrared Spectrophotometer Shimadzu 24 FT-I.R 8400s. Electronic spectra of the prepared complexes were measured in the region (200- 1100) nm for  $10^{-3}$  M solutions in N, N-dimethylsulphoxide (DMSO) at 25°C using shimadzu-U.V-160.A UltraVioletVisible- Spectrophotometer with 1.000  $\pm$  0.001 cm matched quartz cell. While percentage of the metal in the complexes were determined by Atomic Absorption(A.A)Technique using Japan A.A-67GShimadzu. Electrical conductivity measurements of the complexes were recorded at at room temperature for  $10^{-3}$  M solutions of the samples in (DMSO) using pw9527 Digital conductivity meter (Philips). Melting points were recorded by using Stuart melting point apparatus.,Magnetic susceptibility measurements were measured using Bruker magnet BM6 instrument at 298°K following the Farady's method. The proposed molecular structure of the complexes weredrawing by using chem. office program, 3DX (2006).

#### 2.2. Preparation of Complexes :

The complexes of the series [M (SMX) (Asn)<sub>2</sub>]. were prepared by the following general method

#### (A)potassiumasparginate (Na<sup>+</sup>Asn<sup>-</sup>):

The amino acid L- Asparagine monohydrate[0.34 gm, 2 m mol] was dissolved in 10 ml H<sub>2</sub>O/ethanol (50%) mixture containing KOH (0.112 g, 2 m mol) in a flask and stirred at room temperature (20 °C), the solution was deprotonated according to the Scheme (1).



Scheme (1) : Schematic representation Preparation of the potassium asparaginate

#### (B) General method for Preparation of the mixed ligand metal (II) complexes:

A metal(II) chloride [(0.197g, MnCl<sub>2</sub>.4H<sub>2</sub>O, CoCl<sub>2</sub>.6H<sub>2</sub>O(0.237g,1mmol), NiCl<sub>2</sub>.6H<sub>2</sub>O (0.237g, 1mmol), CuCl<sub>2</sub>.2H<sub>2</sub>O(0.176g, 1mmol), ZnCl<sub>2</sub>(0.136g, 1mmol), CdCl<sub>2</sub> (0.183g, 1mmol), and (0.271g, 1mmol), HgCl<sub>2</sub>(0.271g,1mmol)] dissolved in in ethanol: water (1:1) 25ml respectively was added gradually with stirring to solution of potasium*aspargin*ate (K<sup>+</sup>Asn<sup>-</sup>), (0.253gm,1mmole) of Sulfamethoxazole (SMX) was added to the mixture in each case by using stoichiometric amount [(1:2:1) [(metal:  $2(K^+ Asp^-)$ : (SMX)] molar ratios, the above reaction mixture to raise the pH upto ~6.0 and the mixture was stirred for (20 -30mint)at room temperature. After one day a colored microcrystalline solid was obtained which was filtered and washed with ethanol. The solid was recrystallized from a H<sub>2</sub>O/ethanol (50%) mixture. and dried in vacuum over anhydrous CaCl<sub>2</sub>.See Scheme (1). The yields range from 65 to 90 %. The decomposition temperatures range from: 216-340 °C.

The solubility of the metal complexes were tested using various polar solvents like water, methanol, ethanol, acetone ,propanol ,DMF. DMSO and nonpolar solvents like benzene and di ethyl ether ,carbon tetrachloride.(10 mg of metal complex was taken and dissolved into (1-2) ml of corresponding solvent and checked the solubility.





#### **RESULTS AND DISCUSSION**

This study has provided an opportunity to compare the spectroscopic and other physical properties of all the complexes by using data obtained under the similar set of experimental conditions. The metal (II) complexes (1–7) were prepared in a stoichiometric[(metal:  $2(K^{+}Asn^{-})$ : (SMX)]of 1:2:1. of molar ratios with M(II) ions, Were M(II)=Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Hg(II). Wereused as chlorides and obtained in fairly good yield (Scheme-2). The physical properties of the complexes are shown in (Table 1).

#### Color Determination:

Color of the metal complexes were determined by the visual observation. All the complexes are colored, non-hygroscopic.

#### Melting Point and Solubility :

The complexes are thermally stable and decomposed at high temperature on heating. These are insoluble in water or most of the organic solvents like methanol, benzene and carbon tetrachloride, DMF but soluble in DMSO.

#### Molar conductance:

Molar conductance's ( $\Lambda_m$ ) of 10<sup>-3</sup> solutions of the complexes in DMSO lie in very low range (1-11.4)  $\Omega^{-1}$ cm<sup>2</sup>mol<sup>-1</sup> supporting their non-electrolytic behavior. [11]

## Metal Analysis (AAS) and chloride ion content [12]:

Atomic Absorption Spectroscopy (AAS) analysis of the complexes was carried out by direct method which gave total metal content. The experimental percentage of metal in the complexes was obtained from the AAS data using the following formula:

$$M(\%) = Absorbance(A, ppm) \times \frac{volume of metal solution}{weight of complex} \times \frac{100}{1000}$$

The calculated and experimental values of metal percentage in each complex are in fair agreement. These results are very supportive of the proposed formulae of the complexes (Table1).

The atomicabsorption measurements (Table-1) and chloride ion content( Cl % =Nill) for all complexes gave approximated values for theoretical values. In conclusion, our investigation this suggest that the ligands L-Aspargine and Sulfamethoxazole(antibiotic)coordinate with M (II) forming octahedral geometry.

#### Fourier-transform infrared spectra and mode of coordination :

The important infrared frequencies exhibited by the ligands (AsnH) and (SMX) and their mixed ligand complexes are given in the Tables (2,3 and 4).

The relevant vibration bands of the free ligands and the complexes are in the region  $4000-400 \text{ cm}^{-1}[8-15]$ . The most important infrared spectral bands that provide conclusive structural evidence for the coordination of the ligands to the central metal ions .

As regards the chelation of amino acids, the IR spectra exhibited significant features in  $\nu NH_2$ ,  $\nu COO-$  regions. It is worth while mentioning here that the free amino acids exist as zwitterions ( $NH_3^+Asn H. COO^-$ ) and the IR spectra of these cannot be compared entirely with those of metal complexes as amino acids in metal complexes do not exist as zwitterions.[10-12] see Scheme (3).



Scheme (3): zwitterions of L-Aspargine

In the ligand spectra the v(N-H) stretching vibration appears at **3115**cm<sup>-1</sup> is shifted at 3244 cm<sup>-1</sup>, 3196 cm<sup>-1</sup>, 3182cm<sup>-1</sup>, 3184cm<sup>-1</sup>, 3184cm<sup>-1</sup>, 3188cm<sup>-1.3</sup>190cm<sup>-1</sup>and 3191 cm<sup>-1</sup> (in the Mn (II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Hg(II) respectively, spectra proving the involvement of the  $-NH_2$ - group in the complex formation [13-14]. Table (2), displays the (FT-IR) spectrum for the ( Asn H)exhibited a band around v(3452) cm<sup>-1</sup> that corresponds to the stretching vibration of v(N-H) + v (O-H), while another strong absorption band at v (3115)cm<sup>-1</sup> is due to the  $v(N-H_2)_{sym}$  while the bands at (**1557**) cm<sup>-1</sup> and (**1431**) cm<sup>-1</sup> were assigned to the  $v(-COO)_{asy}$  and  $v(-COO)_{sym}$  respectively.  $v\Delta$  (-COO)asy-sym=126 cm<sup>-1</sup>. [8-13].

A general tendency in the relationship between v (COO<sup>-</sup>) (the difference between the wavenumbers of the asymmetric( $v_{asym}$ ) and the symmetric (vsym) stretches of carboxylate group from the FT-IR spectra) and the types of coordination of the (COO<sup>-</sup>) group to metal ions by examining the structures.[13-14].

In case of (SMX) molecule the  $\upsilon \delta$  (N–H) vibrations of –NH<sub>2</sub>(aromatic sec. amine) occur at (3468 and 3378) cm<sup>-1</sup> for free (SMX) due to  $\upsilon$ as (NH<sub>2</sub>) and  $\upsilon$ s (NH<sub>2</sub>), respectively. The hypochromic effect (decreasing in the intensity of $\upsilon$  (NH) vibrations in case of mixed ligand complexes rather than (SMX) alone as well as the blue shifted in the

wave numbers from 3299 cm<sup>-1</sup>to range (3149 cm<sup>-1</sup>) (mixed complex). [8,12, 13] Such these changes clearly indicate that the lone pair of electron of  $NH_2$  and in sulfamethoxazole donor is participated in the complexation process with metals. acting as bidentate ligand. [8] .Some new bands of weak intensity observed in the regions around (513-663) cm<sup>-1</sup> and (437-574) cm<sup>-1</sup> may be ascribed to M-N and M-O vibrations, respectively [15-16].It may be noted that, these vibrational bands are absent in the spectra of the ligands.

## Electronic spectra and Magnetic moment:

The electronic spectral studies of Mixed Ligand Complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd (II) and Hg (II) with (AsnH) and (SMX) were carried out in DMSO solution. The values of band positions (nm) and molar absorptivity's ( $\epsilon_{max}L$  cm<sup>-1</sup> mol<sup>-1</sup>) with the magnetic moment values for complexes are listed in Table 5 were calculated from the measured magnetic susceptibilities after employing diamagnetic corrections. And together with the proposed assignments and suggested geometries. The results obtained are in good agreement with other spectra and the literatures. [17-24]

## $[Mn(SMX)(Asn)_2]$

The (U.V- Vis) spectrum, exhibits two peaks, the first weak peak at (536 nm) (18656 cm<sup>-1</sup>)( $\epsilon_{max}$  =64 molar<sup>-1</sup>.cm<sup>-1</sup>), which assigned tod-d transitions ( $6A_{1g}(S) \rightarrow 4T_{2g}(G)$ ), while the second high intense peak with shoulder at(260 nm)(36630cm<sup>-1</sup>)( $\epsilon_{max}$ =1492molar<sup>-1</sup>.cm<sup>-1</sup>)is due to the (C.T) and µeff = 6.191B.M, which suggests a high spin octahedral geometry around the central metal ion,[17].

## $[Co(SMX)(Asn)_2]$

The (U.V- Vis) spectrum, exhibits five peaks , the first three weak peaks are typical of Co(II) ground state . The assignment of the electronic spectral bands, their positions, and the spectral parameters for Co(II) 4T1g(F)  $\rightarrow$ 4T2g(F)  $\upsilon$ 1= (895 n nm) 11173 cm<sup>-1</sup>, ( $\varepsilon_{max}$  =86molar<sup>-1</sup>.cm<sup>-1</sup>), 4T<sub>1g</sub>(F)  $\rightarrow$ 4A<sub>2g</sub>,  $\upsilon$ 2= (868nm) 11520 cm<sup>-1</sup>, ( $\varepsilon_{max}$  =74 molar<sup>-1</sup>.cm<sup>-1</sup>), 3A2g(F)  $\rightarrow$ 4T1g,  $\upsilon$ 3= (534 nm) 18726 cm<sup>-1</sup>, ( $\varepsilon_{max}$  =68 molar-1.cm<sup>-1</sup>),  $\upsilon$ 2/  $\upsilon$ 1 =1.03,  $\upsilon$ 1/  $\upsilon$ 2 = 0.96,  $\upsilon$ 3/  $\upsilon$ 2 =1.62,

In this case first transition equal splitting energy  $\Delta o(10 \text{ Dq}) = 11520 \text{ cm}^{-1}$ , LFSE=24.86 kcol.mol<sup>-1</sup>, B=971 , and the fourthpeak (350 nm)(38610 cm<sup>-1</sup>)( $\varepsilon_{max}$  =95 molar<sup>-1</sup>.cm<sup>-1</sup>) and fifth intense maxima peak at(259 nm)(28571 cm<sup>-1</sup>)( $\varepsilon_{max}$  =987 molar<sup>-1</sup>.cm<sup>-1</sup>) due to (C.T) intra ligand transitions of the organic moiety. The room temperature magnetic moment (µeff= 4.952.BM) which lie in range (4.82-5.5)BM corresponded to a high spin octahedral geometry. [19,20]

## $[Ni(SMX)(Asn)_2]$

The (U.V- Vis) spectrum, exhibits four peaks , the firstweak peaks at (860 nm)(11627 cm<sup>-1</sup>)( $\epsilon_{max}$  =45 molar<sup>-1</sup>.cm<sup>-1</sup>) which assigned to<sup>3</sup>A<sub>2</sub>g<sup>(F)</sup>  $\rightarrow$ <sup>3</sup>T<sub>1</sub>g<sup>(f)</sup> (v1) (d–d), while the second and thirdpeaks , (584 m)(18248cm<sup>-1</sup>)( $\epsilon_{max}$  =41 molar<sup>-1</sup>.cm<sup>-1</sup>), which assigned to<sup>3</sup>A<sub>2</sub>g<sup>(F)</sup>  $\rightarrow$ <sup>3</sup>T<sub>1</sub>g<sup>(P)</sup> (v2) (d–d), and (355 nm)( 28196 cm<sup>-1</sup>)( $\epsilon_{max}$  =75 molar<sup>-1</sup>.cm<sup>-1</sup>), which assigned to <sup>3</sup>A<sub>2</sub>g<sup>(F)</sup>  $\rightarrow$ <sup>3</sup>T<sub>1</sub>g<sup>(P)</sup> (v3)(d–d), respectively and high peak at (290nm)( 34482 cm<sup>-1</sup>)( $\epsilon_{max}$  =1241 molar<sup>-1</sup>.cm<sup>-1</sup>) is due to the(C.T)transition. the complex exhibited a value of  $\mu$  eff = 2.262B.M, which suggests a high spin 11627cm-1, LFSE=26.17 kcol.mol-1, B=1040cm-1, The v2/v1 ratio is 1.56, which is in the usual range reportedoctahedral geometry around the central metal ion.[19,20]

The spectral parameters of the Ni(II)complex are as follows [21] : $\upsilon 1/\upsilon 2$ ratio is 0.637, Dq = for an octahedral Ni(II) complexes [12-22].

## $[Cu(SMX)(Asn)_2]$

The (U.V- Vis) spectrum, exhibits two peaks , the first weak peaks at (644nm)( 15527 cm<sup>-1</sup>) ( $\varepsilon_{max} = 104 \text{ molar}^{-1}$ .cm<sup>-1</sup>),mainly due to ( ${}^{2}\text{Eg} \rightarrow {}^{2}\text{T}_{2}\text{g}$ ), transition suggesting the distorted octahedral geometry [16,].while the second high broad peak at (262 nm)( 38167 cm<sup>-1</sup>)( $\varepsilon_{max} = 1206 \text{ molar}^{-1}$ .cm<sup>-1</sup>) may be due to ligand to metal charge transfer (LMCT) which is a characteristic of copper(II) complexes with amines.[23-24]Cu(II) complex exhibited a value of  $\mu eff=1.638\mu$ B, [2,21,25]. The observed magnetic moments of Cu(II) lie in the range 1.80- 1.87 BM showing one unpaired electron with paramagnetic nature and suggested a high spin distorted octahedral geometry in teems of Jahn-Teller effect.[19-21]

# [Zn(SMX)(Asn)<sub>2</sub>], [Cd (SMX)(Asn)<sub>2</sub>]and [Hg (SMX)(Asn)<sub>2</sub>]

The Zn(II),Cd(II) and Hg(II) complexes did not display any peak in the visible region, no ligandfield absorptions band was observed, therefore the bands appeared in the spectra of three complexes could be attributed to charge transfer transition. in fact this result is a good agreement with previous work of octahedral geometry and magnetic susceptibility measurements for Zn(II),Cd(II) and Hg(II) ( $d^{10}$ )(white complexes) showed diamagnetic as expected from their electronic configuration . [15,16].

## Antibacterial Activity of Metal Complexes, L-Aspargine and Commercial Drug Sulfamethoxazole(antibiotic)

Table 5 reveal that the synthesized compounds were potent as bacteriostatic agents. The synthesized metal complexes were screened for their antimicrobial activity by well plate method in nutrient agar .The plates were incubated in incubator at 37°C for 24 hours. In order to enure that solvent had no effect on bacteria, a control test was performed with DMSO and found inactive in culture medium. Antibacterial activities were evaluated by measuring inhibition zone diameters. (IZ)and compared with the standard DMSO (as control).[24-26].The zones of inhibition was formed by these complexes was recorded in mm by scale figure -2-complexes have been tested for their antibacterial activity 38, against *E. coli, staphylococcus, Psedomonas* and *S. aureus* and Acineto. The comparison of the biological activities of the synthesized complexes and known antibiotic shown the following results:

1-The prepared [Hg (SMX)(ASN)<sub>2</sub>] complexes show positive effect towards four organisms have exhibited very good activity with the zone of inhibition 25-30 mm and the complexes also show higher activity than the ligand. [24-25].

2-The prepared [Mn (SMX)(ASN)2] complex show negative towards 3- organisms except Acineto

3- The prepared [Cu(SMX)(ASN)<sub>2</sub>] complex shows weakly active with the zone of inhibition 12 mm. [26-27].

4-The prepared  $[Cd(SMX)(ASN)_2]$  and  $[Co (SMX)(ASN)_2]$  and  $[Mn(SMX)(ASN)_2]$  complexes show negative towards *E-coli*.

5-The rate of inhibition diameter was varied according to the variation in the complexes ,ligands type and Bacterial type.[27].The antibacterial activity is found to be in the order;

Acineto>staphylococcus>Pseudomonas> E-coli Ligand (Drug)SMX>Ligand(amino acid)ASN

#### Table 1 : Analytical and some physical data of the complexes

| Ligand / Complex,<br>Molecular Formula         | Color       | Yield<br>% | M.P /<br>decomp. Temp. °C | M%<br>Theory<br>(exp) | $\begin{array}{c} \Lambda m\\ \Omega^{\text{-1}}.Cm^2.mole^{\text{-1}} \end{array}$ |
|------------------------------------------------|-------------|------------|---------------------------|-----------------------|-------------------------------------------------------------------------------------|
| [Mn(SMX) (Asn) <sub>2</sub> ]<br>C18H25MnN7O9S | light-Brown | 70         | 217 -220                  | 9.63<br>(8.22)        | 2.2                                                                                 |
| [Co(SMX)( Asn) <sub>2</sub> ]<br>C18H25CoN7O9S | Red- brown  | 65         | 230 D                     | 10.26<br>(8.28)       | 9.3                                                                                 |
| [Ni(SMX)(Asn) <sub>2</sub> ]<br>C18H25NiN7O9S  | Green       | 72         | 245D                      | 10.23<br>(9.21)       | 5.2                                                                                 |
| [Cu(SMX)( Asn) <sub>2</sub> ]<br>C18H25CuN7O9S | Blue        | 81         | 269D                      | 10.97<br>(9.31)       | 1                                                                                   |
| [Zn(SMX)(Asn) <sub>2</sub> ]<br>C18H25ZnN7O9S  | White       | 73         | 201D                      | 11.26<br>(10.33)      | 11.4                                                                                |
| [Cd(SMX)( Asn 2]<br>C18H25CdN7O9S              | White       | 78         | 289D                      | 17.91<br>(16.11)      | 5.9                                                                                 |
| [Hg(SMX)( Asn) <sub>2</sub> ]<br>C18H25HgN7O9S | White       | 90         | 315D                      | 28.03<br>(26.63)      | 2.7                                                                                 |

| <sup>a</sup> Calculatea | l values | in | parentheses |
|-------------------------|----------|----|-------------|
|-------------------------|----------|----|-------------|

| Table 2-FT-R spectral data of the L-Aspargine |                   |             |         |           |            |               |  |  |  |  |
|-----------------------------------------------|-------------------|-------------|---------|-----------|------------|---------------|--|--|--|--|
| υ(N-H)+                                       | N(N H) sym        | υ (C–H) +   | v(C, C) | υ         | v(COO)sym  | υΔ            |  |  |  |  |
| υ (O-H)                                       | $0(1N-H_2)$ sylli | ; CH3       | 0(C-C)  | (-COO)asy | 0(-COO)sym | (-COO)asy-sym |  |  |  |  |
| 3452vs                                        | 31156             | 2066: 2040: | 1350we  | 155716    | 1/131 100  | 126           |  |  |  |  |
| 3452vs                                        | 51158             | 29008,29498 | 155948  | 155778    | 145178     | 120           |  |  |  |  |

|                                                      | Table 3-FT-R spectral data of Sulfamethoxazole |                                     |        |                                            |                      |             |                |                |                           |                |                |                                        |                    |
|------------------------------------------------------|------------------------------------------------|-------------------------------------|--------|--------------------------------------------|----------------------|-------------|----------------|----------------|---------------------------|----------------|----------------|----------------------------------------|--------------------|
| vas<br>(N-H);<br>-vs<br>NH <sub>2</sub><br>& -<br>NH | v<br>(C–H);<br>aromatic                        | υ<br>(C-<br>H) +<br>CH <sub>3</sub> | υ(C=C) | υδof<br>(N–H)<br>Ring<br>breathing<br>band | υ C–H<br>deformation | v<br>SO₂asy | 。<br>(C−<br>N) | υ<br>(C-<br>Ο) | v(SO <sub>2</sub> )<br>sy | ບ<br>(S-<br>N) | υ<br>(C-<br>S) | υ<br>(C–<br>H)<br>bend<br>δrock;<br>NH | CNC<br>deformation |
| vas<br>3468 s<br>vs<br>3 <b>300</b> vs               | 3378 vs,<br>, 3143 s                           | 2929<br>w,<br>2858<br>w             | 1622vs | 1597vs                                     | 1504s<br>1469s       | 1365s       | 1309s          | 1266<br>ms     | 1157vs<br>1143s<br>1091s  | 987w           | 831<br>vs      | 927<br>ms                              | 547s               |

|         | Table 4-FT-R spectral data of mixed ligand complexes |                       |                                    |                                     |                                               |                      |                            |                                |                                |            |                           |              |             |
|---------|------------------------------------------------------|-----------------------|------------------------------------|-------------------------------------|-----------------------------------------------|----------------------|----------------------------|--------------------------------|--------------------------------|------------|---------------------------|--------------|-------------|
| No.     | vas<br>(N–H);<br>vs<br>NH <sub>2</sub><br>& –<br>NH  | υ (C–H);<br>aromaticy | υ (C–<br>H) +<br>; CH <sub>3</sub> | Stretch<br>grouping<br>of<br>v(C=C) | υδdef<br>h(N–H)<br>Ring<br>breathing<br>bands | υ C–H<br>deformation | υ(SO <sub>2</sub> )<br>asy | v<br>(-<br>COO) <sub>asy</sub> | v<br>(-<br>COO) <sub>sym</sub> | υ(C-<br>N) | v(SO <sub>2</sub> )<br>sy | M-N          | M-O         |
| 1<br>Mn | 3437m<br>3244s                                       | 3317<br>3244          | 2960 s,<br>2920m                   | 1680w                               | 1550 vs                                       | 1456                 | 1367s                      | 1415s                          | 1301                           | 1307       | 1180<br>1159<br>1026      | 513<br>544   | 437<br>457  |
| 2<br>Co | 3408s<br>3196s                                       | -                     | 2933w                              | 1651vs                              | 1550 s                                        | 1516m                | 1338w                      | 1462m                          | 1303m                          | 1303m      | 1170<br>1134<br>1095m     | 663<br>582   | 459         |
| 3<br>Ni | 3385vs<br>3182s                                      | 3348<br>3273          | 2953vs<br>2929s                    | 1656vs                              | 1593vs                                        | 1527mw               | 1359s                      | 1475s                          | 13459s                         | 1313w      | 1170<br>1149<br>1062m     | 603m<br>584m | 507<br>493w |
| 4<br>Cu | 3387vs<br>3184vs                                     | 3333vs<br>3295vs      | 2928m<br>,2362m                    | 1689<br>vs                          | 1633vs                                        | 1587vs<br>1441s      | 1361vs                     | 1411s                          | 1361s                          | 1309s      | 1170vs<br>1132vs<br>1099m | 605<br>586   | 526<br>451w |
| 5<br>Zn | 3363vs<br>3188                                       | 3364vs<br>3271v       | 2964m<br>,2933m<br>2870w           | 1658                                | 1624s                                         | 1585vs<br>1550       | 1383<br>Vs                 | 1415vs                         | 1354vs                         | 1317m      | 1155m<br>1116vs<br>1078vs | 642<br>586   | 574<br>455  |
| 6<br>Cd | 3400vs<br>3190                                       | 3265s<br>3236         | 2956w                              | 1660vs                              | 1591vs                                        | 1591vs               | 1388<br>Vs                 | 1550<br>s                      | 1388s                          | 1315m      | 1151m<br>1126s<br>1091m   | 642w<br>611m | 528<br>462  |
| 7<br>Hg | 3470s<br>3149s                                       | 3373<br>3242s         | 2929m                              | 1631                                | 1531vs                                        | 1599vs               | 1433                       | 1473s                          | 1363<br>m                      | 1307       | 1168m<br>1136vs<br>1087vs | 657<br>547   | 528<br>503  |

| Table 5- Electronic Spectral data in DMSO, magnetic moment, of the studied compounds |     |       |                |                                                     |                  |  |  |  |  |
|--------------------------------------------------------------------------------------|-----|-------|----------------|-----------------------------------------------------|------------------|--|--|--|--|
| Comp.                                                                                | λnm | ABS   | $v' (cm^{-1})$ | Assignments                                         | µ <i>eff</i> B.M |  |  |  |  |
| $C_6H_{13}NO_2(Asn)$                                                                 | 297 | 1.934 | 33670          | n→π*                                                | -                |  |  |  |  |
| SMX                                                                                  | 275 | 0.086 | 36363          | $\pi \rightarrow \pi^*$                             | -                |  |  |  |  |
| [Mn(SMX) (Asn)-]                                                                     | 536 | 0.064 | 18656          | ${}^{6}A_{1}g^{(S)} \rightarrow {}^{4}T_{2}g^{(G)}$ | 6 1 9            |  |  |  |  |
|                                                                                      | 260 | 1.492 | 36630          | C.T                                                 | 0.17             |  |  |  |  |
|                                                                                      | 895 | 0.086 | 11173          | ${}^{4}T_{1}g \rightarrow {}^{4}T_{1}g^{(f)}$       |                  |  |  |  |  |
|                                                                                      | 868 | 0.074 | 11520          | ${}^{4}T_{1}g \rightarrow {}^{4}A_{2}g^{(f)}$       |                  |  |  |  |  |
| [Co(SMX) (Asn) <sub>2</sub> ]                                                        | 534 | 0.068 | 18726          | ${}^{4}T_{1}g \rightarrow T_{1}g^{(p)}$             | 4.95             |  |  |  |  |
|                                                                                      | 350 | 0.095 | 28571          | C.T                                                 |                  |  |  |  |  |
|                                                                                      | 259 | 0.987 | 38610          | C.T                                                 |                  |  |  |  |  |
|                                                                                      | 860 | 0.045 | 11627          | ${}^{3}A_{2}g^{(F)} \rightarrow {}^{3}T_{1}g^{(f)}$ |                  |  |  |  |  |
| [Ni(SMX) (Asn)2]                                                                     | 584 | 0.041 | 18248          | $^{3}A_{2}g^{(F)} \rightarrow ^{3}T_{2}g^{(f)}$     | 2.26             |  |  |  |  |
|                                                                                      | 355 | 0.075 | 28196          | ${}^{3}A_{2}g^{(F)} \rightarrow {}^{3}T_{1}g^{(p)}$ | 2.20             |  |  |  |  |
|                                                                                      | 290 | 1.241 | 34482          | C.T                                                 |                  |  |  |  |  |
| $[C_{\rm H}({\rm SMV})(\Lambda_{\rm op})]$                                           | 644 | 0.104 | 15527          | $^{2}Eg \rightarrow ^{2}T_{2}g$                     | 1.62             |  |  |  |  |
| [Cu(SWIX) (ASII) <sub>2</sub> ]                                                      | 262 | 1.206 | 38167          | C.T                                                 | 1.05             |  |  |  |  |
| [Zn(SMX)(Asn) <sub>2</sub> ]                                                         | 294 | 1.297 | 34013          | C.T                                                 | Diamagnetic      |  |  |  |  |
| [Cd(SMX) (Asn) <sub>2</sub> ]                                                        | 265 | 1.803 | 37735          | C.T                                                 | Diamagnetic      |  |  |  |  |
| [Hg(SMX) (Asn) <sub>2</sub> ]                                                        | 272 | 2.195 | 36764          | C.T                                                 | Diamagnetic      |  |  |  |  |

| Table6. Antimicrobial activity data of the ligands (SMX) , (Asn H) and their mixed ligand complexes. (Zone of inhibition (mm) |         |                |             |         |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|---------|----------------|-------------|---------|--|--|--|--|--|
| Comp.                                                                                                                         | E-coli. | staphylococcus | Pseudomonas | Acineto |  |  |  |  |  |
| (SMX)                                                                                                                         | 0       | 40             | 27          | 45      |  |  |  |  |  |
| (ASN)                                                                                                                         | 0       | 26             | 11          | 35      |  |  |  |  |  |
| [Mn(SMX)(ASN) <sub>2</sub> ]                                                                                                  | 0       | 0              | 0           | 12      |  |  |  |  |  |
| [Co(SMX)(ASN) <sub>2</sub> ]                                                                                                  | 0       | 25             | 30          | 25      |  |  |  |  |  |
| [Ni(SMX)(ASN) <sub>2</sub> ]                                                                                                  | 13      | 18             | 16          | 19      |  |  |  |  |  |
| [Cu(SMX)(ASN) <sub>2</sub> ]                                                                                                  | 11      | 12             | 15          | 15      |  |  |  |  |  |
| [Zn(SMX)(ASN) <sub>2</sub> ]                                                                                                  | 12      | 18             | 11          | 23      |  |  |  |  |  |
| [Cd(SMX)(ASN) <sub>2</sub> ]                                                                                                  | 0       | 25             | 10          | 17      |  |  |  |  |  |
| [Hg(SMX)(ASN) <sub>2</sub> ]                                                                                                  | 25      | 30             | 25          | 33      |  |  |  |  |  |



Figure. 3 Chart of biological effects of some of the studied compounds

## CONCLUSION

We have successfully synthesized the mixed ligand complex of M (II)=Mn(II),Co(II),Ni(II),Cu(II),Zn(II),Cd(II) and Hg(II) containing O-N donor ligands. The complex was also characterized by molar conductance, magnetic susceptibility measurement and also by FT- IR, UV- visible spectroscopy. The UV–Vis and magnetic moment data revealed an octahedral geometry around M(II),as proposed. (schem1).All the complexes are non-electrolyte.Based on the reported data, it may be concluded that L-Aspargineand sulfamethoxazole,coordinate to metal ions as bidentate ligand through oxygen atom of carboxylate group (COO-) and nitrogen atom of amine group (NH2 in L-Asparginewhile In sulfamethoxazole, coordination of the metal ion occur through the oxygen of the sulphone group and nitrogen of the amine group.The complexes are biologically active and exhibit enhanced antibacterial activities as compared to their parent ligands, hence further study of these complexes could lead to interesting results.

## Acknowledgement

The authors are thankful to university of Baghdad, IRAQ, for providing laboratory facilities.

## REFERENCES

[1]B.C. Khade, Deore P.M. and Arbad B.R., Int.J. Chem. Tech Res., 2010, 2 (2), 1036-1041

[2]B.K.Magareand M.B.Ubale, J Chem Bio and Phy.Sci., 2012, 2(1), 108-113

[3] G Kumari, Chemistry, 2011, 20, (1.).

[4]K.Radha, , M.S. Mohan, Y L. Kumari, K.B.S. Sudha, P.J. J. Chem. Sci.2006, 4, 635-648.

[5] F. Rey; J. M Antelo, F. Arce, & F.Penedo; J. Polyhedron, 1990, 9(5), 665

[6] A. G.Gilman, J. G. Hardman, and L. E.Limbird,: *The Pharmacological Basis of Therapeutics:* McGraw-Hill, New York, 9th ed. **1996**, 1905.

[7]A.Verma,; J. M.Simard,; J.W. E. Wora, and V. M.Rotello,; J. Am. Chem. Soc., 2004.126, 13987.

[8]RaheemTaher Mahdi, Taghreed H. Al-Noor, Ahmed H Ismael Advances in Physics Theories and Applications, 2014, 27, 8-19

[9]. Betriu C, Sanchez A, Palau ML, Gomez M and Picazo JJ. *J Antimicrob Chemother*, **2001**; 48: 152–4.

[10]EsinSenol, Jeffrey DesJardin, Paul C. Stark, Laurie Barefoot and David R. Snydman. .*Clin Infec Dis*,2002: 34; 1653-1656.

[11] W. J. Geary, Coord. Chem. Rev. 1971, 7, 81-122.

[12] A. Vogel (1978). Text Book of Quantitative Inorganic Analysis(Longman, London). 694.

[13] K. Nakamoto; **1996**.Infrared spectra of Inorganic and coordination compounds "4Ed th ; J. Wiely and Sons, Newyork.

[14] R. M. Silverstein, *Spectrophotometric Identification of Organic Compounds*, **2009**. John Wiley, New York, NY, USA.

[15]R.C Sharma, P.P Giri, Devendra Kumar and Neelam, J. Chem. Pharm. Res.2012, 4(4): 1969-1973.

[16] Fayad N.K., Taghreed H. Al-Noor and Ghanim F.H, Journal of Advances in Physics Theories and Applications, **2012** (9), 1-12.

[17] A.B.P., Lever "Inorganic Electronic spectroscopy", 2rd Ed Elsevier, New York. 1984.

[18] H. Al-Noor. Taghreed, , T. Ahmed. AL- Jeboori , ManhelReemon , , Journal of Chemistry and Materials Research , 2013 Vol.3 No.3, 114-124.

[19] H. Al-Noor. Taghreed, , T. Ahmed. AL- Jeboori , ManhelReemon , *Journal Advances in Physics Theories* and Applications **2013**Vol.18, 1-10.

[20] R. L Dutta. and A. Syamal, *Elements of Magnatochemistry*, 2nd Ed., East west press, New Delhi, 1996.

[21]B. N. Figgis, J. Lewis, Prog. Inorg. Chem. 1965, 6, 37

[22]W. Manchand W. ConardFernelius, Journal of Chemical Education Volume 1961. 38(4) 192-201,

[23]M. Y fouziarafat. Siddiqi and k. S. Siddiqi., J. Serb. Chem. Soc. 2004, 69 (8-9) 641-6649

[24] V. Reddy, N.Patiland S.D.Angadi, E-J. Chem., 2008, 5(3),577-583.

[25] J.A Obaleye, Nde –aga,, J.B and E.A ,Balogun ,. Afr. J. Sci. 1997,(1):10-12.

[26] H.W ,Seely and P J Van Demark, *Microbes in Action, Laboratory of Microbiology*, 3<sup>rd</sup> Ed., W H Freeman and Co. U.S.A, **1981**, 38

[27] H. Al-Noor. Taghreed, ,ManhelReemon, T. Ahmed. AL- Jeboori , Journal of Chemical and Pharmaceutical Research, 2014, 6(4):1225-1231