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ABSTRACT

Thermophysical properties of oxygen are of great importance in practical applications. However, the values of the
properties differs from each other under different circumstances, which may have bad influence in practical
productions and applications. In our study, we mainly used computational models like Artificial Neural Networks
(ANNSs) to predict the thermophysical properties of the chemical substances. We succeeded in establishing 9 modelsto
predict the thermophysical properties of oxygen, namely density, energy, enthalpy, entropy, isochoric heat capacity,
isobaric heat capacity, viscosity and dielectric constant, by analyzing 51 data groups using linear prediction and
Multilayer Feedfoward Neural Network (MLFN) methods. Within permissible error range (30% tolerance), all the
tested samples were corresponded with the actual value. Our models were proved to be robust and accurate which
indicated that ANN models can be applied in predicting the thermophysical properties of oxygen.

Keywords: Oxygen, thermophysical property; Artificial Neufdétworks, linear prediction, Multilayer Feedfondar
Neural Network.

INTRODUCTION

Thermodynamics [1] is a natural science studyireg bad temperature and how they are related taged work.
It defines macroscopic variables, such as intexnalgy, entropy, and pressure. It indicates tleab#havior of those
variables is subject to general constraints whighcmmmon to all materials rather than the pecylraperties of
particular materials. The four laws of thermodynesraccurately express these general constraingsnibiaynamics
mainly studies the bulk behavior of the body rativean the microscopic behaviors of the very largmibers of its
microscopic constituents, like molecules [2-6]. €aming the microscopic constituents, statisticathanics can be
used to explain its laws. behavior of the bodyeathan the microscopic behaviors of the very largmbers of its
microscopic constituents, like molecules. What @@ statistical mechanics can be applied to expla laws of the
microscopic constituents.

Artificial Neural Networks

Artificial Neural Networks (ANNS) [7-9] are compuianal models inspired by animals' central nerveystems that
are able to learn and recognize pattern. They swally described as different kinds of interconadctneurons”
systems that can calculate different values frqmutis via feeding information through the networkldive methods
such as non-linear approaches are growing morenane mature and has been packed into the modthe sbftware
as the algorithm develops [10-12].

1521



SongLan et al J. Chem. Pharm. Res., 2014, 6(6):1521-1528

In our study, we aimed at establishing differentM\khodels on the base of the current thermophypicaerties of
oxygen. With the help of the models, we can pretiiethemophysical properties of oxygen accuratetier different
circumstances.

An artificial neural network (ANN), also called malinetwork (NN), is a mathematical or computatianmadel. By
using concepts from an obviously disparate fielaly electric circuits and computer science [118, model also
indicates the possibilities of improved understagdof neural systems. And it is inspired by theicture and/or
functional aspects of human biological neural nekso

A neural network consists of an interconnected grofuartificial neurons. And a connectionist apmtoés taken to
process information by the neural network. In nezastes, an artificial neural network (ANN) is an ttlee system
that is capable of adapting continuously to neve @atd learning from the accumulated experiencelHl4Besides,
the system can change its structure based on ektarimternal information that flows through thetwork during the
learning phase. Apart from that, the system cao alsstract essential information from data or mambehplex
relationships between inputs and outputs.

Output

Hidden layer

Input
Figure 1. A schematic view of artificial neural network structure

The main structure of the artificial neural netw@ANN) is made up of the input layer and the oulpyer, as can be
seen from the figure above. It is the input layet tintroduces the input variables into the netw§tk]. Also, the

network provides predictions for the response Wwemwhich stand for the output of the nodes in tartain layer.
Besides, it also includes the hidden layers. Tipe §nd the complexity of the process or experintiemtaisually

iteratively have a great influence on the optimaiber of the neurons in the hidden layers [17].

EXPERIMENTAL SECTION

Selection of Variables

The temperature and pressure are set to be thpandent variable in all models in order to ensheerbbustness of
the models,. When a model is being trained, alldtieer thermophysical properties are set to bertiependent
variables. Take the densify) (prediction model for an example, once the densiggliction model is being trained, all
the other thermophysical properties including terapge and pressure are considered as indepenaiéaibies, thus
ensuring the robustness of the prediction model.

Training Process of the Neural Network

The ANN prediction model is constructed by the Nédool$” Software (Trial Version, Palisade Corporation, NY,
USA) [18]. We chose the General Regression Neugaivirks [19-21] (GRNN) module and Multilayer Feenffard
Neural Networks [22-24] (MLFN) module as the traigimodules.

The data we used were generated from the equatfatate presented in the references below [25718.properties
tabulated are density), energy E), enthalpy H), entropy §), isochoric heat capacityC(), isobaric heat capacity
(Cp), thermal conductivity 4 ) viscosity ), and dielectric constanbj. The references [25-27] should be consulted
for information on the uncertainties and the refeeestates foE,H, andS. The training results are shown as follows
(Data sourceCRC Handbook of Chemistry and Physics [28]).
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Table 1. Thetraining result of density in different ANN models

ANN Model Trained Samples  Tested Samples RMS Error  TrainimgT Finishing Reason

Linear Predictor 34 17 0.02 0:00:00 Auto-Stopped
GRNN 34 17 4.92 0:00:00 Auto-Stopped
MLFN 2 Nodes 34 17 3.61 0:02:44 Auto-Stopped
MLFN 3 Nodes 34 17 1.65 0:04:12 Auto-Stopped
MLFN 4 Nodes 34 17 3.07 0:03:31 Auto-Stopped
MLFN 5 Nodes 34 17 4.18 0:04:24 Auto-Stopped

According to the training results shown on Tablérigar prediction is considered to be the bestehodpredicting
the values of density (RMS error: 0.02). 100% wstmples showed accurate results within permessitsbr range
(30% tolerance). Therefore, there are totally 1cteasful samples. The training results are shoviollasvs:

Predicted vs. Actual (Training)

Predicted

Figure 2. A comparison of the predicted values and actual values of density (Training)

Table 2. Thetraining result of energy in different ANN models.

ANN Model Trained Samples  Tested Samples RMS Errdiraining Time  Finishing Reason

Linear Predictor 34 17 23.64 0:00:00 Auto-Stopped
GRNN 34 17 621.89 0:00:00 Auto-Stopped
MLFN 2 Nodes 34 17 260.72 0:01:13 Auto-Stopped
MLFN 3 Nodes 34 17 386.50 0:01:07 Auto-Stopped
MLFN 4 Nodes 34 17 667.63 0:01:37 Auto-Stopped
MLFN 5 Nodes 34 17 961.86 0:01:22 Auto-Stopped

According to the training results shown on Tablérizar prediction is considered to be the bestehodpredicting
the values of energy (RMS error: 23.64). 10@%ted samples showed accurate results within peitsie error range
(30% tolerance). Therefore, there are totally 1cteasful samples. The training results are shoviollasvs:

Predicted vs. Actual (Training)
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Figure 3 A comparison of the predicted values and actual values of energy (Training)

Table 3. Thetraining result of enthalpy in different ANN models

ANN Model Trained Samples Tested Samples RMS Errdraining Time  Finishing Reason

Linear Predictor 34 17 18.14 0:00:00 Auto-Stopped
GRNN 34 17 344.82 0:00:00 Auto-Stopped
MLFN 2 Nodes 34 17 149.52 0:00:42 Auto-Stopped
MLFN 3 Nodes 34 17 53.60 0:01:04 Auto-Stopped
MLFN 4 Nodes 34 17 391.37 0:01:24 Auto-Stopped
MLFN 5 Nodes 34 17 723.67 0:01:48 Auto-Stopped
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According to the training results above, lineardicgon is considered to be the best model in tédj values of
enthalpy (RMS error: 18.14). 100 % tested samptesved accurate results within permissible errogea(80%
tolerance). Therefore, there are totally 17 sudaksamples. The training results are shown agvdt

Predicted vs. Actual (Training)
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Figure 4. A comparison of the predicted values and actual values of enthalpy (Training)

Table4. Thetraining result of entropy in different ANN models

ANN Model Trained Samples  Tested Samples RMS Errdraining Time  Finishing Reason
Linear Predictor 34 17 6.29 0:00:00 Auto-Stopped
GRNN 34 17 3.25 0:00:00 Auto-Stopped
MLFN 2 Nodes 34 17 0.89 0:00:50 Auto-Stopped
MLFN 3 Nodes 34 17 2.77 0:01:09 Auto-Stopped
MLFN 4 Nodes 34 17 0.65 0:01:33 Auto-Stopped
MLFN 5 Nodes 34 17 0.40 0:01:28 Auto-Stopped

According to the training results on Table 4, MLFRhdel with 5 nodes is considered to be the besteiiod
predicting the values of entropy (RMS error: 0.4(000% tested samples showed accurate results vienmissible
error range (30% tolerance). Therefore, there ataly 17 successful samples. The training resatésshown as
follows:

Predicted vs. Actual (Training)

1 Predicted

100
200
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Figure 5. A comparison of the predicted values and actual values of entropy (Training)

Table5. Thetraining result of isochoric heat capacity in different ANN models

ANN Model Trained Samples Tested Samples RMS Errdraining Time  Finishing Reason

Linear Predictor 34 17 0.35 0:00:00 Auto-Stopped
GRNN 34 17 0.96 0:00:00 Auto-Stopped
MLFN 2 Nodes 34 17 0.10 0:01:08 Auto-Stopped
MLFN 3 Nodes 34 17 0.20 0:01:43 Auto-Stopped
MLFN 4 Nodes 34 17 0.31 0:01:32 Auto-Stopped
MLFN 5 Nodes 34 17 0.38 0:02:18 Auto-Stopped

According to the training results shown on Tabl&bFN model with 2 nodes is considered to be thet logodel in
predicting the values of isochoric heat capaciti@error: 0.10). 100% tested samples showed aacuesults
within permissible error range (30% tolerance).re€fare, there are totally 17 successful samples.tidining results
are shown as follows:
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Predicted

Predicted vs. Actual (Training)

Figure 6. A comparison of the predicted values and actual values of isochoric heat capacity (Training)

Table6. Thetraining result of isobaric heat capacity in different ANN models

ANN Model Trained Samples Tested Samples RMS Errdraining Time  Finishing Reason
Linear Predictor 34 17 4.36 0:00:00 Auto-Stopped
GRNN 34 17 5.14 0:00:00 Auto-Stopped
MLFN 2 Nodes 34 17 7.78 0:01:47 Auto-Stopped
MLFN 3 Nodes 34 17 10.43 0:01:59 Auto-Stopped
MLFN 4 Nodes 34 17 9.33 0:02:31 Auto-Stopped
MLFN 5 Nodes 34 17 14.71 0:02:38 Auto-Stopped

According to the training results shown on Tablér&ar prediction is considered to be the bestehodpredicting
the values of isobaric heat capacity (RMS erroB6}. 100% tested samples showed accurate resutksnwi
permissible error range (30% tolerance). Therefivere are totally 17 successful samples. Theitgiresults are
shown as follows:

Predicted vs. Actual (Training)

Predicted

Figure 7. A comparison of the predicted values and actual values of isobaric heat capacity (Training)

Table 7. Thetraining result of viscosity in different ANN models

ANN Model Trained Samples  Tested Samples RMS Errdiraining Time  Finishing Reason
Linear Predictor 34 17 64.94 0:00:00 Auto-Stopped
GRNN 34 17 78.99 0:00:00 Auto-Stopped
MLFN 2 Nodes 34 17 25.02 0:01:30 Auto-Stopped
MLFN 3 Nodes 34 17 77.05 0:01:09 Auto-Stopped
MLFN 4 Nodes 34 17 79.85 0:02:03 Auto-Stopped
MLFN 5 Nodes 34 17 77.03 0:02:21 Auto-Stopped

According to the training results above, MLFN modih 2 nodes is considered to be the best modamiddicting the
values of viscosity (RMS error: 2.55). 100% testadhples showed accurate results within permissibsler range
(30% tolerance). Therefore, there are totally I&teasful samples. The training results are shoviollasvs:
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Figure 8. A comparison of the predicted values and actual values of viscosity (Training)

Table 8. Thetraining result of thermal conductivity in different ANN models

ANN Model Trained Samples Tested Samples RMS Errdiraining Time  Finishing Reason
Linear Predictor 34 17 1.45 0:00:00 Auto-Stopped
GRNN 34 17 2.20 0:00:00 Auto-Stopped
MLFN 2 Nodes 34 17 7.01 0:01:17 Auto-Stopped
MLFN 3 Nodes 34 17 6.64 0:01:54 Auto-Stopped
MLFN 4 Nodes 34 17 6.77 0:02:44 Auto-Stopped

MLFN 5 Nodes 34 17 8.51 0:02:45 Auto-Stopped

According to the training results shown on Tablér&ar prediction is considered to be the bestehodpredicting
the values of thermal conductivity (RMS error: 1.48)0% tested samples showed accurate resultsngighmissible
error range (30% tolerance). Therefore, there ati@ly 17 successful samples. The training resafesshown as

follows:
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Figure 9. A comparison of the predicted values and actual values of thermal conductivity (Training)

Table9. Thetraining result of dielectric constant in different ANN models

ANN M odel Trained Samples  Tested Samples RMS Error  Training T Finishing Reason
Linear Predictor 28 17 0.00 0:00:00 Auto-Stopped
GRNN 28 17 0.02 0:00:00 Auto-Stopped
MLFN 2 Nodes 28 17 0.00 0:01:54 Auto-Stopped
MLFN 3 Nodes 28 17 0.01 0:02:26 Auto-Stopped
MLFN 4 Nodes 28 17 0.02 0:02:41 Auto-Stopped
MLFN 5 Nodes 28 17 6.05 0:02:58 Auto-Stopped

According to the training results shown on Tabl®@FN model with 2 nodes is considered to be thet Ibeodel in
predicting the values of dielectric constant (RM8e 0.00). 100% tested samples showed accuratétsewithin
permissible error range (30% tolerance). Therefivere are totally 17 successful samples. Theitgiresults are

shown as follows:
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Predicted vs. Actual (Training)

o Mediced -

Figure 10. A comparison of the predicted values and actual values of dielectric constant (Training)
RESULTSAND DISCUSSION

Results of Each Thermophysical Property
According to the training results above, the bestleh of each thermophysical property of oxygen ddag¢ obtained
as follows:

Table 10: The best model of each thermophysical property of oxygen

Isochoric Isobaric Thermal Dielectric
Density Energy Enthalpy Entropy heat_ heat_ Viscosity conductivity constant
capacity capacity
Best Linear Linear Linear MLFN 5 MLFN 2 Linear MLFN 2 Linear MLFN 2
Model Prediction Prediction Prediction nodes nodes Prediction nodes Prediction nodes

Based on the results shown in Table 10, it is alvibat different ANN models can develop differénr@rmophycical
properties of oxygen, thus ensuring the robustoésise prediction model. Also, every model corraggmowith the
requirement of the accuracy.

Comparison with Other Resear ches
For comparison, we have done the same researchititigen, the results are shown as follows:

Table 11: The best model of each thermophysical property of nitrogen

Isochoric Isobaric . .
Density Energy Enthalpy Entropy heat heat Viscosity cozréirgtqis:t ?:'grlg;gr';
capacity capacity Y
Best Linear Linear Linear MLFN 2 Linear MLFN 9 GRNN MLFN 5 Linear
Model Prediction  Prediction  Prediction nodes Prediction nodes nodes Prediction

According to the two tables above, we found thahatwo elementary substances, the density, ersardyenthalpy
can be predicted effectively by Linear Predictiblowever, other models of thermophysical properiesdifferent.
The results indicated that we cannot combine the dubstances into the same prediction method tegéthour
research results. We'll do further studies to botithe main difference between the models of omyay&l nitrogen.

CONCLUSION

Thermophysical properties of oxygen are importantpractical application. In our study, We succeeded
establishing 9 models to predict the thermophysicaperties of oxygen, namely density, energy, &pth entropy,
isochoric heat capacity, isobaric heat capacisgasity, thermal conductivity and dielectric constédy analyzing 51
data groups using Linear Prediction and MLFN meshatfithin permissible error range (30% toleranedi) the

tested samples were corresponded with the acthiz.v@ur models were proved to be robust and atewvhich

indicated that ANN models can be applied in pradicthe thermophysical properties of oxygen. Initold, we

found that the method of Linear Prediction and Mayer Feedforward Neural Network can also pretfiet values
correctly even some of the data are missing.

For further study, we'll pay our attention to mgdifie models and apply such method to predict gtheperties of

elementary substances. What's more, we'll applly m&thod to predicting other air elemental suchyasogen and
helium. We'll do more researches to find out thénndé#ference among different models of elementargstances.
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