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ABSTRACT 
 
Henry's law constants are crucial to correctly estimate the solubilities of different organic compounds in water. 
However, the precise values of these constants are difficult to obtain by traditional approaches in laboratory. In 
previous studies, a Linear Solvation Energy Relationship (LSER) method has been used to express a relationship 
between the Henry's law constant and the relative descriptors of organic compounds. Some of these studies have 
developed a linear regression model to calculate the Henry's law constants using a LSER method. In our study, instead 
of using linear prediction approach, we successfully established an Artificial Neural Network (ANN) model to predict 
Henry's law constants based on 72 typical organic compounds, using a LSER method to describe the independent 
variables of the ANN model. This research work indicates that the linear relationship provided by the LSER method 
can be calculated to be a non-linear relationship with a lower error using ANN models. Within a permissible error 
range (30% tolerance), results showed that the Multilayer Feedforward Neural Network (MLFN) model with two 
nodes (MLFN-2) is an effective model for predicting the Henry's law constants of organic compounds, whose average 
RMS error is 0.14 logH units.  
 
Keywords: Henry's law constant, organic compounds, Artificial Neural Networks, Multilayer Feedforward Neural 
Networks, linear solvation energy relationship.  
____________________________________________________________________________________________ 

 
INTRODUCTION 

 
Henry’s law describes the equilibrium liquid and vapor phase concentrations of a solute in the limit of low solute 
concentrations [1]. The Henry's law constant H is the partition coefficient of the two phases, representing the migratory 
direction and velocity of the organic compounds existing in the equilibrium liquid and vapor phases. As for the organic 
compounds, those with low value of H are easy to aggregate in the water phase, whereas those with high value of H are 
more concentrated in the gas phase.  
 
In practical applications, we can estimate the aggregation tendency of the organic compounds in water environment by 
knowing the Henry's law constant, which is crucial to the environmental pollution control [2-4]. In the field of 
electrochemistry, Henry's law is also significant in the modeling of PEM fuel cells and Ballard Mark IV solid polymer 
electrolyte fuel cell [5-6], as well as the relative researches on the superoxide electrochemistry in ionic liquid [7]. 
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However, the determination of Henry's law constants is complex and has a low reproducibility, which generates a great 
obstacle to practical applications.  
 
A number of methods in analyzing the Henry's law constants were presented in previous studies [8-12]. English and 
Carroll [8] have developed two estimation models by quantitative structure property relationship and neural networks, 
using 10 and 12 descriptors respectively. Yao and his co-workers [9] utilized radial basis function network-based 
quantitative structure–property relationship to predict the Henry's law constant of organic compounds. Hine [10] and 
Gharagheizi [11] have developed group-contribution-based models to calculate the values of Henry's law constant. 
These methods can predict the Henry's law constant effectively with a small error. Nevertheless, the establishment of 
these models are still complex and difficult to be applied to the practical applications. In addition, Y.B. He and his 
co-workers [12] used multiple linear regression to calculate the constant, which is easy-understanding and convenient. 
But the average stand error of their conclusion is 0.25 logH units, which is generally higher than other prediction 
methods. In general, these studies are useful and can be taken as references, nevertheless, whatever the degree of 
accuracy or the maneuverability of applications, these models have disadvantages (see 4.3: Comparisons with other 
models). 
 
In our study, we aimed at developing a reasonable artificial neural network (ANN) model to predict the values of 
organic compounds' Henry's law constant, using a precise but uncomplicated description based on Linear Solvation 
Energy Relationship (LSER) [13-15]. 

 
EXPERIMENTAL SECTION 

 
Fundamental of Artificial Neural Networks 
Artificial Neural Networks (ANNs) [16-18] are computational models inspired by animals' central nervous systems that 
are capable of machine learning and pattern recognition [19]. They are usually presented as systems of interconnected 
"neurons" that can calculate different values from inputs by feeding information through the network. As the 
development of the algorithm, this method is mature and has been packed into a module of the software [20]. 
Represented by nonlinear functions, artificial neural network analysis is an artificial intelligence (AI) approach to 
modeling.  
 
In natural conditions, elements form groups and connect each other as neurons within the discrete layer. Each 
connection of them has its identified weight coefficient. The multiple layer consisted of the structure of such network 
[21]. Usually, there are one or more than one layers of the elements followed by an output layer. Multiple layers of 
elements can drive the network to learn nonlinear and linear relationships between input and output vectors.  
 

 
Figure 1. A schematic view of artificial neural network structure 

 
Fig.1 shows the main structure of the ANN. It is chiefly made up of the input layer and the output layer [22]. The input 
layer introduces the input variables to the network. The output of the nodes in this layer represents the predictions made 
by the network for the response variables. In addition, it contains hidden layers [23]. The optimal number of neurons in 
the hidden layers depends on the type and complexity of the process or experimentation and it's usually iteratively 
determined. 
 
As for the Henry's law constant, the relationships between constant H and other variables are so complex that can be 
considered to be described by the non-linear situation [8]. Therefore, we did a series of computational experiments on 
developing the ANN models that can describe these relationships accurately. 
 
 
Linear Solvation Energy Relationship 
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Linear solvation energy relationship (LSER) is a method that is deemed to be one of the best patterns of Quantitative 
Structure-Activity Relationships (QSARs) [15]. Kamlet [24] pointed out that, a number of properties of chemicals 
depend on the interaction between solute and solvent. Hence we can predict a series of chemicals' properties by the 
equations of LSER.  
 
According to the equations of LSER [25-26], the description of Henry's law constant was obtained as follows:  

*
0 1log /100 m mH SP mV s a bπ α β= + + + +                                                                                                     (1) 

 
where H represents the Henry's law constant; V1 represents the molar volume, a measurement of the energy effect of the 

void generated by dissolution; *π represents the dipole term, a measurement of the energy effect of the dipole-dipole 

interaction; mα
 
represents the acidity of the hydrogen bond's donor; and mβ represents the basicity of the hydrogen 

bond's acceptor. Bothmα and mβ are measurements of the energy effect of the formation of hydrogen bonds, and SP0, m, 

s, a,and b are constant terms.  
 
According to Eq.1 proveded by a LSER method [25-26], the descriptors of Henry's law constants of 72 typical organic 
compounds are shown as follows : 
 

Table 1: LSER descriptors and logH of 72 typical organic compounds.  
 

Number Compound 
V1/10

0 
*π  mα  mβ  logH 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

benzene 
methylbenzene 
propylbenzene 
fluorobenzene 
fluorobenzene 
iodobenzene 
1, 2 – dichlorobenzene 
1,2, 3 - trichlorobenzene 
1,2,3,5 - four chlorobenzene 
dibromobenzene 
Chlorotoluene 
parabromotoluene 
phenol 
4 - bromophenol 
parachlorophenol 
2 - cresol 
4 – nitrophenol 
1 - chlorine naphthalene 
anisole 
cyanobenzene 
benzaldehyde 
hypnone 
paranitrotoluene 
2, 6 - dinitrotoluene 
1-bromo-4-nitrobenzene 
pyridine 
4 - methyl pyridine 
4 - ethyl pyridine 
2, 4 - dimethyl pyridine 
ethane 
butane 
octane 
ethylene 
n-butene 
hexane 
methane chloride 
tetrachloromethane 
1, 2 - dichloroethane 
1,1,2 – trichloroethane 
pentachloroethane 
1 - chloropropane 
1, 2-2 vinyl chloride 
trichloro ethylene 
3 - allyl chloride 
acetic acid 

0.491 
0.591 
0.768 
0.520 
0.581 
0.671 
0.671 
0.761 
0.851 
0.758 
0.679 
0.722 
0.536 
0.669 
0.626 
0.634 
0.676 
0.843 
0.639 
0.590 
0.606 
0.690 
0.729 
0.869 
0.764 
0.470 
0.568 
0.666 
0.666 
0.272 
0.455 
0.842 
0.243 
0.428 
0.624 
0.252 
0.514 
0.442 
0.519 
0.700 
0.450 
0.541 
0.492 
0.424 
0.323 

0.59 
0.55 
0.51 
0.62 
0.71 
0.81 
0.80 
0.85 
0.70 
0.89 
0.67 
0.75 
0.72 
0.79 
0.72 
0.68 
1.15 
0.80 
0.73 
0.90 
0.92 
0.90 
0.97 
1.02 
1.01 
0.87 
0.84 
0.85 
0.79 

0 
0 

0.01 
0.08 
0.08 
0.08 
0.45 
0.28 
0.81 
0.81 
0.62 
0.39 
0.70 
0.53 
0.49 
0.60 

0.10 
0.11 
0.12 
0.07 
0.07 
0.05 
0.03 

0 
0 

0.02 
0.08 
0.08 
0.33 
0.23 
0.23 
0.34 
0.32 
0.11 
0.32 
0.37 
0.44 
0.49 
0.31 
0.56 
0.26 
0.64 
0.67 
0.65 
0.67 

0 
0 
0 

0.07 
0.07 
0.07 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.05 
0.05 
0.45 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.61 
0.69 
0.67 
0.58 
0.82 

0 
0 
0 
0 

0.04 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.05 
0.56 

-0.65 
-0.56 
-0.39 
-0.59 
-0.74 
-1.28 
-1.00 
-1.30 
-0.63 
-1.07 
-0.76 
-1.02 
-4.79 
-5.21 
-4.77 
-4.30 
-7.77 
-1.45 
-1.68 
-2.50 
-2.95 
-3.36 
-2.55 
-3.61 
-2.74 
-3.44 
-3.61 
-3.46 
-3.56 
1.31 
1.58 
2.12 
0.94 
1.01 
1.25 
-0.39 
0.07 
-1.27 
-1.43 
-1.00 
-0.26 
-0.92 
-0.32 
-0.42 
-4.91 
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46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 

methyl alcohol 
allyl alcohol 
butanol 
hexyl alcohol 
octanol 
cyclohexanol 
methyl formate 
ethyl acetate 
ethyl propionate 
methyl butyrate 
methyl pentanoate 
methyl caproate 
methyl caprylate 
diethyl ether 
butyl ether 
acetaldehyde 
hexanal 
heptanal 
acetone 
2 – butanone 
2 - undecane ketone 
ethylamine 
butyl amine 
dimethylamine 
triethylamine 
acetonitrile 
nitroethane 

0.205 
0.372 
0.499 
0.690 
0.882 
0.636 
0.326 
0.521 
0.622 
0.620 
0.716 
0.814 
1.010 
0.505 
0.895 
0.284 
0.674 
0.772 
0.380 
0.477 
1.159 
0.335 
0.535 
0.339 
0.704 
0.271 
0.445 

0.40 
0.40 
0.40 
0.40 
0.40 
0.45 
0.62 
0.55 
0.53 
0.55 
0.46 
0.55 
0.55 
0.27 
0.27 
0.63 
0.63 
0.63 
0.71 
0.67 
0.61 
0.32 
0.31 
0.25 
0.14 
0.75 
0.80 

0.42 
0.43 
0.45 
0.45 
0.45 
0.51 
0.37 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.47 
0.47 
0.41 
0.41 
0.41 
0.48 
0.48 
0.48 
0.70 
0.69 
0.70 
0.71 
0.31 
0.25 

0.35 
0.33 
0.33 
0.33 
0.33 
0.31 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.04 
0.03 

0 
0.14 
0.14 
0.14 

0 
0.09 
0.12 

-3.72 
-3.69 
-3.46 
-3.20 
-3.01 
-3.61 
-2.04 
-2.26 
-2.05 
-2.08 
-1.86 
-1.82 
-1.50 
-1.28 
-0.61 
-2.57 
-2.06 
-1.96 
-2.79 
-2.72 
-1.58 
-3.38 
-3.21 
-3.14 
-2.22 
-2.85 
-2.72 

 
Training Process of The Neural Networks 
The ANN prediction models were constructed by the NeuralTools® software (Trial Version, Palisade Corporation, NY, 
USA). We chose the linear regression (LR) module, General Regression Neural Networks (GRNN) [27-29] module 
and Multilayer Feedforward Neural Networks (MLFN) [30-32] module as the training modules. 85% data groups were 
used for training set, while the rest of groups were used for testing set. To ensure the accuracy of the results, models 
were trained repeatedly. Each process was generated randomly by the different composition of training sets. The 
average training results are shown as follows: 
 

Table 2: The average training results of Henry's law constants in different models 
 

Model Trained Samples Tested Samples RMS Error Training Time Finishing Reason 
Linear Prediction 
GRNN 
MLFN 2 Nodes 
MLFN 3 Nodes 
MLFN 4 Nodes 
MLFN 5 Nodes 
MLFN 6 Nodes 
MLFN 7 Nodes 
MLFN 8 Nodes 
MLFN 9 Nodes 
MLFN 10 Nodes 
MLFN 11 Nodes 
MLFN 12 Nodes 
MLFN 13 Nodes 
MLFN 14 Nodes 
MLFN 15 Nodes 
MLFN 16 Nodes 
MLFN 17 Nodes 
MLFN 18 Nodes 
MLFN 19 Nodes 

MLFN 20 Nodes 

61 
61 
61 
61 
61 
61 
61 
61 
61 
61 
61 
61 
61 
61 
61 
61 
61 
61 
61 
61 
61 

11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 

0.18 
0.36 
0.14 
0.16 
0.15 
0.20 
0.35 
0.45 
0.37 
0.40 
0.45 
0.60 
0.54 
0.57 
1.51 
0.60 
0.61 
0.62 
0.92 
1.16 
0.59 

0:00:01 
0:00:00 
0:01:10 
0:01:15 
0:01:32 
0:01:40 
0:01:31 
0:02:14 
0:02:05 
0:02:48 
0:03:00 
0:03:00 
0:03:38 
0:03:40 
0:04:42 
0:04:50 
0:04:34 
0:05:32 
0:05:14 
0:04:53 
0:04:56 

Auto-Stopped 
Auto-Stopped 
Auto-Stopped 
Auto-Stopped 
Auto-Stopped 
Auto-Stopped 
Auto-Stopped 
Auto-Stopped 
Auto-Stopped 
Auto-Stopped 
Auto-Stopped 
Auto-Stopped 
Auto-Stopped 
Auto-Stopped 
Auto-Stopped 
Auto-Stopped 
Auto-Stopped 
Auto-Stopped 
Auto-Stopped 
Auto-Stopped 
Auto-Stopped 

 
Table 2 shows that the MLFN model with 2 nodes (MLFN-2) generates the lowest RMS error (0.14). With the 
increasing nodes, RMS errors of MLFN models are also higher than MLFN-2 model. Therefore, it is not necessary to 
establish more MLFN models with over 20 nodes, since the training time may increase rapidly with the increasing 
quantity of nodes. In addition, the RMS error of linear regression is 0.18 logH units, which is corresponded with the 
result of the reference [12]. 
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RESULTS AND DISCUSSION 
 
Training Results of MLFN-2 Model 
Training results of MLFN-2 model in predicting the Henry's law constants are shown as follows: 
 

 
 

Figure 2. Comparison between predicted values and actual values of Henry's law constant of organic compounds using MLFN-2 model 
during training process 

 

 
 

Figure 3. Comparison between residual values and actual values of Henry's law constant of organic compounds using MLFN-2 model 
during training process 

 

 
 

Figure 4. Comparison between residual values and predicted values of Henry's law constant of organic compounds using MLFN-2 model 
during training process 

 
Fig.2 to 4 depict the training results of MLFN-2 model in predicting the Henry's law constants of organic compounds. 
There into Fig.2 presents the good fitting process of the neural networks, and  residual values shown in Fig.3 and Fig.4 
are concentrated nearby the regression line. Results show that the process is accurate and normal. 
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Testing Results of MLFN-2 Model 
In order to test the robustness of MLFN-2 model in predicting Henry's law constants of organic compounds, in each 
process, we took different data components as the training set and testing set. Fig.5 to 7 are one of the examples of 
testing results of MLFN-2 model: 
 

 
 

Figure 5. Comparison between predicted values and actual values of Henry's law constant of organic compounds using MLFN-2 model 
during testing process 

 

 
 

Figure 6. Comparison between residual values and actual values of Henry's law constant of organic compounds using MLFN-2 model 
during testing process 

 

 
 

Figure 7. Comparison between residual values and predicted values of Henry's law constant of organic compounds using MLFN-2 model 
during testing process 

 
Fig.5 to 7 depict the testing results of MLFN-2 model. It's obvious that the predicted values are very closed to the actual 
values. Among the three figures, Fig.5 presents a good testing results, all the predicted values are corresponded with the 
actual values within the permission error. Fig.6 and Fig.7 also show that the residual values are concentrated nearby the 
regression line. What is worth mentioning is that the results are averages, being concluded from a series of repeated 



Hao Li and Xiaoting Wang et al                 J. Chem. Pharm. Res., 2014, 6(6):1557-1564         
______________________________________________________________________________ 

1563 

experiments, proving that the development of MLFN-2 model is a robust process in predicting Henry's law constants of 
organic compounds. 
 
Comparisons with Other Models 
According to previous studies [8-12], similar researches on predicting the Henry's law constants were provided. In 
English and Carroll's research [8], the QSAR and ANN models were developed. Their models are based on a complex 
molecular recognition method, using more than 10 descriptors, which may be difficult to practical applications. Yao 
and his co-workers' prediction model was based on the radial basis function network-based quantitative 
structure–property relationship [9]. However, RMS error of their tests and the overall data sets are 0.3121 and 0.3038 
logH units, which may be a little high compared with other previous studies. Group-contribution-based models 
developed by Hine [10] and Gharagheizi [11] are robust, but the processes of establishment are not easy to operate.  
In our study, we aimed at using LSER method to find out the variables to develop the ANN model innovatively. 
Previous opinions considered that there exists a linear relationship between the independent variables of Eq.1 and logH 
[12,25-26]. Our research found that this linear relationship can transform to be a nonlinear situation with a lower error 
via ANN models. 
 
Previous studies were successful that can be used for references to our study, having different advantages respectively 
by using various prediction or calculation methods. Nevertheless, by contrast, we considered that using Multilayer 
Feedforward Neural Networks combined with linear solvation energy relationship to predict the Henry's law constants 
of organic compounds is a easier and more precise method (RMS error: 0.14 logH units). The model can not only 
obtain the precise value of Henry's law constants, but also be applied to practical applications. 
 

CONCLUSION 
 
Instead of measuring the values of Henry's law constant of organic compounds from experiments in laboratory, it is now 
possible to use the artificial neural networks with known experimental data and linear solvation energy relationship to 
predict this property of organic compounds. The neural network can now be put to use with the actual data, which 
involves the values of Henry's law constant. 
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