Journal of Chemical and Pharmaceutical Research, 2013, 5(11):260-264

Research Article

ISSN : 0975-7384 CODEN(USA) : JCPRC5

PI index for some special graphs

Li Yan¹, YingfangLi¹, Wei Gao² and Junsheng Li^{1*}

¹School of Engineer, Honghe University, Mengzi, P. R. China ²School of Information Science and Technology, Yunnan Normal University, Kunming, P. R. China

ABSTRACT

The Padmakar-Ivan (PI) index is a Wiener-Szeged-like topological index which reflects certain structural features of organic molecules. Each structural feature of such organic molecule can be expressed as a graph. In this paper, we

study the PI indices for some special graphs, such as $I_r(F_n)$, $I_r(W_n)$, F_n , W_n , $I_r(F_n)$ and $I_r(W_n)$.

Keywords: PI indices, organic molecules, fan graph, wheel graph, gear fan graph, gear wheel graph, r-corona graph

INTRODUCTION

Wiener index (W) and Szeged index (Sz) are introduced to reflect certain structural features of organic molecules [1, 2]. Khadikar et al. [3, 4] introduced another index called Padmaker-Ivan (PI) index. For the previous results on PI index, can refer [5-8].

In this paper, we study the PI index of several simple connected graphs. The PI index of a graph G is defined as follows:

 $PI=PI(G) = \sum \{ n_{eu}(e \mid G) + n_{ev}(e \mid G) \},\$

where e=uv, $n_{eu}(e | G)$ is the number of edges of G lying closer to u than v, $n_{ev}(e | G)$ is the number of edges of G lying closer to v than u and the summation goes over all edges of G. The edges which are equidistant from u and v are not considered for the calculation of PI index. In what follows, we write n_{eu} instead of $n_{eu}(e | G)$ for short. The readers can refer to [9] for standard graph theoretic concepts and terms used but undefined in this paper.

In this paper, we determine the PI index for some special graphs. The organization of rest paper is as follows. First, we give some necessary definition in the next section. Then, the main result in this article is given in the third section.

Preliminaries

For each edge e=uv, let $n_e = n_{uv}$ be the number of edges with different distance to u and v.

Definition 1. The graph $F_n = \{v\} \lor P_n$ is called a fan graph and the graph $W_n = \{v\} \lor C_n$ is called a wheel graph, where P_n is a path with *n* vertices and C_n is a cycle with *n* vertices.

Definition 2. Graph $I_r(G)$ is called *r*- crown graph of *G* which splicing *r* hang edges for every vertex in *G*. The vertex set of hang edges that splicing of vertex *v* is called *r*-hang vertices, note v^* .

Definition 3. By adding one vertex in every two adjacent vertices of the fan path P_n of fan graph F_n , the resulting graph is a subdivision graph called gear fan graph, denote as $\tilde{F_n}$.

Definition 4. By adding one vertex in every two adjacent vertices of the wheel cycle C_n of wheel graph W_n , The resulting graph is a subdivision graph, called gear wheel graph, denoted as W_n .

Main results and Proof

Theorem 1. For $n \ge 3$, $PI(I_r(F_n)) = (2n^2 + 2n - 8) + r(r(n+1)^2 + 3n^2 + 3n - 6)$.

Proof. It is trivial for n=3 and n=4. In the following text, we consider $n \ge 5$. Let $P_n = v_1 v_2 \dots v_n$ and the *r* hanging vertices of v_i be v_i^1 , v_i^2 , \dots , v_i^r ($1 \le i \le n$). Let *v* be a vertex in F_n beside P_n , and the *r* hanging vertices of *v* be v^1 , v^2 , \dots , v^r .

By the definition of PI index, we have

$$n_{vv_{1}} = 2n + nr - 3, \quad n_{vv_{2}} = 2n + (n-1)r - 3, \quad n_{vv_{3}} = 2n + (n-1)r - 4, \quad \dots, \quad n_{vv_{\lceil \frac{n}{2} \rceil}} = 2n + (n-1)r - 4.$$

$$n_{v_{1}v_{2}} = 3r + 4, \quad n_{v_{2}v_{3}} = 4r + 5, \quad n_{v_{3}v_{4}} = 4r + 6, \quad \dots, n_{v_{\lceil \frac{n}{2} \rceil - 1} \lceil \frac{n}{2} \rceil} = 4r + 6.$$

$$n_{vv^{1}} = n_{vv^{2}} = \dots = n_{vv'} = r(n+1) + 2n - 2.$$

$$n_{v_{1}v_{1}}^{-1} = n_{vv_{1}v_{1}}^{-2} = \dots = n_{vv'_{1}} = r(n+1) + 2n - 2 \quad \text{for all } 1 \le i \le n.$$

Hence, if n is odd, then

$$\begin{aligned} & \operatorname{PI}(I_{r}(F_{n})) = [(2n+nr-3)+(2n+(n-1)r-3)+(2n+(n-1)r-4) \times \frac{(n-1)-4}{2} + (3r+4)+(4r+5)+(4r+6) \times \frac{(n-1)-4}{2}] \times \\ & 2+(2n+(n-1)r-4)+(n+1)r(r(n+1)+2n-2) \\ & = (2n^{2}+2n-8)+r(n^{2}+3n-4)+(n+1)r(r(n+1)+2n-2) \\ & = (2n^{2}+2n-8)+r(r(n+1)^{2}+3n^{2}+3n-6). \end{aligned}$$
If *n* is even, then
$$\operatorname{PI}(I_{r}(F_{n})) = [(2n+nr-3)+(2n+(n-1)r-3)+(2n+(n-1)r-4) \times \frac{(n-1-4)+1}{2} + (3r+4)+(4r+5)+(4r+6) \times \frac{(n-1-4)-1}{2}]$$

$$\times$$
 2+(4*r*+6)+(*n*+1)*r*(*r*(*n*+1)+2*n*-2)

 $=(2n^{2}+2n-8)+r(n^{2}+3n-4)+(n+1)r(r(n+1)+2n-2)$

$$=(2n^2+2n-8)+r(r(n+1)^2+3n^2+3n-6).$$

Thus, we get the desire result.

Theorem 2. For $n \ge 6$, $PI(I_r(W_n))=2n^2+3n+r(r(n+1)^2+3n^2+4n-1)$.

Proof. Let $C_n = v_1 v_2 \dots v_n$ and v_i^1 , v_i^2 , \dots , v_i^r be the *r* hanging vertices of v_i $(1 \le i \le n)$. Let *v* be a vertex in W_n beside C_n , and v^1 , v^2 , \dots , v^r be the *r* hanging vertices of *v*.

By the definition of PI index, we have

$$n_{vv_1} = n_{vv_2} = \dots = n_{vv_n} = 2n + (n-1)r - 3$$

$$n_{v_1v_2} = n_{v_2v_3} = \dots = n_{v_{n-1}v_n} = n_{v_nv_1} = 4r + 6.$$

$$n_{vv^{1}} = n_{vv^{2}} = \dots = n_{vv^{r}} = r(n+1) + 2n-1.$$

$$n_{v_i v_i^1} = n_{v_i v_i^2} = \dots = n_{v_i v_i^r} = r(n+1) + 2n-1$$
 for all $1 \le i \le n$.

Therefore,

$$PI(I_r(W_n)) = (2n + (n-1)r - 3)n + (4r+6)n + (r(n+1) + 2n-1)r(n+1) = 2n^2 + 3n + r(r(n+1)^2 + 3n^2 + 4n-1).$$

Hence, we derive the desire conclusion.

Theorem 3. For $n \ge 3$, PI(F_n)=9 n^2 -21n+14.

Proof. It is trivial for n=3 and n=4. In the following text, we consider $n \ge 5$. Let $P_n = v_1 v_2 \dots v_n$ and $v_{i,i+1}$ be the adding vertex between v_i and v_{i+1} . Let v be a vertex in F_n beside P_n . By virtue of the definition of PI index, we get

$$n_{vv_{1}} = 3n-4, \quad n_{vv_{2}} = 3n-5, \quad n_{vv_{3}} = 3n-5, \quad \dots, \\ n_{vv_{1}\frac{n}{2}} = 3n-5, \quad n_{v_{1,2}v_{2}} = 3n-4, \quad n_{v_{2}v_{2,3}} = 3n-5, \quad n_{v_{2,3}v_{3}} = 3n-5, \dots, \\ n_{v_{1}\frac{n}{2}-1} = 3n-5, \quad n_{v_{1,2}v_{2}} = 3n-4, \quad n_{v_{2}v_{2,3}} = 3n-5, \dots, \\ n_{v_{1}\frac{n}{2}-1} = 3n-5, \dots, \\ n_{v_{1}\frac{n}{2}-1}$$

Thus, if n is odd, then

$$PI(\bar{F}_n) = [(3n-4) + (3n-4) + (3n-5) \times \frac{(n-1)-2}{2} + (3n-5) \times (n-2)] \times 2 + (3n-5)$$

 $=9n^2-21n+14.$

If n is even, then

$$PI(I_r(F_n)) = 2(3n - 4) + (n - 2)(3n - 5) + 2(3n - 4) + (2n - 4)(3n - 5) = -9n^2 - 21n + 14.$$

Then, the desire result is given.

Theorem 4. For $n \ge 3$, PI(W_n)=3n(2n-3).

Proof. Let $C_n = v_1 v_2 \dots v_n$ and v be a vertex in W_n beside C_n . $v_{i,i+1}$ be the adding vertex between v_i and v_{i+1} . In view of the definition of PI index, we deduce

$$n_{vv_1} = n_{vv_2} = \dots = n_{vv_n} = 3n-3.$$

$$n_{v_1v_{1,2}} = n_{v_{1,2}v_2} = n_{v_2v_{2,3}} \dots = n_{v_{n-1,n}v_n} = n_{v_nv_{n,1}} = n_{v_n,v_1} = 3n-3.$$

Therefore,

 $PI(W_n) = 3n(2n-3).$

Hence, we get the desire conclusion.

Theorem 5. For $n \ge 3$, $PI(I_r(F_n)) = (9n^2 - 21n + 14) + 2nr(6n + 2nr - 5)$.

Proof. It is trivial for n=3 and n=4. In the following text, we consider $n \ge 5$. Let $P_n = v_1 v_2 \dots v_n$ and $v_{i,i+1}$ be the adding vertex between v_i and v_{i+1} . Let v_i^1 , v_i^2 , ..., v_i^r be the *r* hanging vertices of v_i ($1 \le i \le n$). Let $v_{i,i+1}^1$, $v_{i,i+1}^2$, ...,

 $v_{i,i+1}^r$ be the *r* hanging vertices of $v_{i,i+1}$ ($1 \le i \le n-1$). Let *v* be a vertex in F_n beside P_n , and the *r* hanging vertices of *v*be v^1 , v^2 , ..., v^r .

By virtue of the definition of PI index, we get

$$\begin{split} n_{vv_1} = & (3n-4) + 2nr, \quad n_{vv_2} = & (3n-5) + 2nr, \quad n_{vv_3} = & (3n-5) + 2nr, \quad \dots, n_{vv_{\lceil n \rceil}} = & (3n-5) + 2nr. \\ n_{vv_1} = & n_{vv_2} = & \dots = & n_{vv_1} = & 3n + 2nr-3. \end{split}$$

 $n_{v_1v_{1,2}} = (3n-5) + 2nr, \quad n_{v_{1,2}v_2} = (3n-4) + 2nr, \dots, \quad n_{v_{\lfloor \frac{n}{2} \rfloor - \lfloor \frac{n}{2} \rfloor} \left\lfloor \frac{n}{2} \rfloor} = (3n-5) + 2nr.$

 $n_{_{v_iv_i^1}} = n_{_{v_iv_i^2}} = \ldots = n_{_{v_iv_i^r}} = 3n + 2nr - 3 \quad \text{for all } 1 \le i \le n.$

$$n_{v_{i,i+1}v_{i,i+1}^{1}} = n_{v_{i,i+1}v_{i,i+1}^{2}} = \dots = n_{v_{i,i+1}v_{i,i+1}^{i}} = 3n+2nr-3 \quad \text{for all } 1 \le i \le n-1.$$

Hence, in terms of Theorem 3, we infer

$$PI(I_r(F_n)) = (9n^2 - 21n + 14) + 2nr(3n - 2) + 2nr(3n + 2nr - 3) = (9n^2 - 21n + 14) + 2nr(6n + 2nr - 5).$$

Thus, the result is hold.

Theorem 6. For $n \ge 3$, $PI(I_r(W_n))=3n(2n-3)+r(2n+1)(6n+r(2n+1)-1)$.

Proof. Let $C_n = v_1 v_2 ... v_n$ and v be a vertex in W_n beside C_n . $v_{i,i+1}$ be the adding vertex between v_i and v_{i+1} . Let v^1 , v^2 , ..., v^r be the r hanging vertices of v and v_i^1 , v_i^2 , ..., v_i^r be the r hanging vertices of v_i ($1 \le i \le n$). Let $v_{n,n+1} = v_{n,1}$, and $v_{i,i+1}^1$, $v_{i,i+1}^2$, ..., $v_{i,i+1}^r$ be the r hanging vertices of $v_{i,i+1}$ ($1 \le i \le n$). In view of the definition of PI index, we deduce

$$\begin{split} n_{vv_{1}} &= n_{vv_{2}} = \dots = n_{vv_{n}} = (3n-3) + r(2n+1). \\ n_{v_{1}v_{1,2}} &= n_{v_{1,2}v_{2}} = n_{v_{2}v_{2,3}} \dots = n_{v_{n-1,n}v_{n}} = n_{v_{n}v_{n,1}} = n_{v_{n,1}v_{1}} = (3n-3) + r(2n+1). \\ n_{vv_{1}}^{-1} &= n_{vv_{2}}^{-1} = \dots = n_{vv_{1}}^{-1} = 3n + r(2n+1) - 1. \\ n_{v_{1}v_{1}}^{-1} &= n_{v_{1}v_{1}}^{-2} = \dots = n_{v_{1}v_{1}}^{-1} = 3n + r(2n+1) - 1 \quad \text{for all } 1 \le i \le n. \\ n_{v_{1,i+1}v_{1,i+1}}^{-1} &= n_{v_{1,i+1}v_{1,i+1}}^{-2} = \dots = n_{v_{1,i+1}v_{1,i+1}}^{-1} = 3n + r(2n+1) - 1 \quad \text{for all } 1 \le i \le n. \end{split}$$

Therefore, using Theorem 4, we get

 $PI(I_r(W_n)) = 3n(2n-3) + 3n(r(2n+1)) + r(2n+1)(3n+r(2n+1)-1)$ = 3n(2n-3) + r(2n+1)(6n+r(2n+1)-1).

As conclusion, we obtain the final conclusion.

CONCLUSION

Fan graph, wheel graph, gear fan graph, gear wheel graph and their *r*-corona graph are common structural features of organic molecules. The contributions of our paper are determining the PI index of these special structural features of organic molecules.

Acknowledgment

First we thank the reviewers for their constructive comments in improving the quality of this paper. This work was supported in part by pecuniary aid of Yunnan Province basic research for application(2013fz127) and PhD initial funding of the third author in this paper. We also would like to thank the anonymous referees for providing us with constructive comments and suggestions.

REFERENCES

- [1] H. Wiener, J. Am. Chem. Soc. 69(1947) 17-20.
- [2] P.V. Khadikar, P.P. Kale, N.V. Deshpande, S. Karmarkar, V.K. Agrawal, Math.Comput. Chem. 43 (2001) 7-15.
- [3] P.V. Khadikar, Nat. Acad. Sci. Lett. 23(2000) 113-118.
- [4] P.V. Khadikar, S. Karmarkar, V.K. Agrawal, J. Chem. Inf. Comput. Sci. 41(2001) 934-949.
- [5] M. Jaiswal, P.V. Khadikar, J. Indian Chem. Soc. 82 (2005) 247-249.
- [6] P.E. John, P.V. Khadikar, J. Singh, J. Math. Chem. 42(2006) 37-45.
- [7] J. Hao. Some Bounds for PI Indices. MATCH Commun. Math. Comput. Chem. 60 (2008) 121-134
- [8] J. Hao. Some graphs with extremal PI index. MATCH Commun. Math.Comput. Chem. 63 (2010) 211-216.
- [9] J. A. Bondy, U. S. R. Mutry. Graph Theory, Spring, Berlin, 2008.