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ABSTRACT

Prolyl oligo peptidase (POP) is a serine endo p#ge that hydrolyses proline containing peptideth \hdss than
30 amino acid length. POP enzyme suspected to belved in several biological functions such as cell
proliferation, differentiation, signal transductipiParkinson’s and Alzheimer’s disease. POP inhiisitoave been
developed to restore the depleted neuro peptideldesncountered in aging or in neurodegenerativodiers.
Sequentially to understand the mechanism of acpbarmacophore analyses and docking studies werferpged

on POP inhibitors Five point Pharmacophore with pharmacophoric teas, two hydrogen bond acceptors (A),
one hydrophobic group (H) and two aromatic ring$ {fs generated with considerabléd®d G values of 0.913
and 0.652 respectively. The results obtained frbim $tudy were used for designing of new POP itdviki This
study further furnishes modest information in teeelopment and investigation of POP inhibitors.

INTRODUCTION

Prolyl oligo peptidase (POP) (EC 3.4.21.26) alsovim as prolyl endo peptidase (PREP), was identifigdvalter

et al. in the year 1971 from bovine uterus as aytamin cleaving enzyme; later it was linked to thalrolysis of
neuro peptides. It is a serine protease belongeedamily S9 of the serine carboxy peptidase clahlt has a
special feature of hydrolysing small proline riabptides (length less than 30 amino acids) sucteasrpeptides,
arginine-vasopressin (AVP), neurotensin, oxytoaid aubstance P (SP) etc. It cleaves-f®-Xaa-bond at the
carboxyl side of a proline residue, whetaais amino acid other than proline.[2-3] POP fanmlyvidely distributed

in organisms ranging from bacterial species to mafaifd] It is found in all tissues, but the highastivities have
been measured in the brain.[5-6] Generally, POPRrésent in neurons, which use gamma-aminobutyrid ac
(GABA) and acetylcholine (ACh) as neurotransmittexther than dopamine.[7] Due to its locality angportance
in neuropeptide break-down, POP enzyme has assddiatCNS diseases related to neuropeptidergicumatibn
[8] such as depressiomarkinson’s, Alzheimer's diseases[Hmnesia, schizophrenia, trypanosomiasis, bipolar
affective disorder etc. In animals, the role of P@d3 observed to control peptide signalling patreaayd has been
extensively studied. The inhibitors of POP restihve altered activity of neural network and adjustinopeptides
levels to normal.

The present work highlights pharmacophore modeling docking analysis of Pyrrolidinyl Pyridone (Pa&t)d
Pyrazinone (Py) analogues of POP inhibitors. Pheomiaore [9] is an important model in rational ddesign that
exemplifies the geometry complementary of drughtotarget. Pharmacophore hypothesis collects confeainres
distributed in three-dimensional space that pauditg in important interactions between drug antvadite. Atom
based 3D- pharmacophore model [10, 11] and dockiag performed with a series of PP and PY analogties
Prolyl oligo peptidase [12] with PHASE [13] and @i modules respectively. PHASE (Pharmacophore Alegmt
and Scoring Engine) is a flexible module for phacophore identification, assessment, model developfid, 15]
database construction and searching [16].
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Glide (Grid Based Ligand Docking with Energeticgshbeen designed to perform an exhaustive seartheof
positional, orientation and conformational spacailable to the ligand based on energy of the systeatking
study was applied with a series of hierarchic#éifd to search for possible sites of the liganghénactive site region
of the receptor. The objective of the present stisdyp fabricate reliable and modest informatioquieed for the
design of new inhibitors towards POP.

EXPERIMENTAL SECTION

A dataset comprising of 39 molecules (Table-1) wasd and it$n vitro biological activity data reported assiC
values were converted to plfCA total of 39 molecules were available with gj@alues, of which 29 molecules
were randomly chosen as training set and 10 masculere selected as test sets to accommodateusaluct
diversity in model generation.

Computational detailsfor 3D QSAR

The 3D conversion and minimization was performedhagusLigPrep [17] with OPLS2005 force field [18]
incorporated in PHASE. Pharmacophore model devebmpmequires all-atom 3D structures that are réalis
representations of the experimental molecular uctiire something close to the putative binding mddience,
conformers were generated using a rapid torsioifessegarch followed by minimization of each genetatgucture
using OPLS2005 force field, with implicit distanceependent dielectric solvent model. A maximum o0@d0
conformers were generated per structure using appoeess minimization of 100 steps and post process
minimization of 50 steps. Each minimized conformsas filtered through a relative energy vawd of 10
kCal/mol and RMSD of 1.04.

Creating pharmacophore sites

Each ligand structure is represented by #&oBgoints in 3D space, that facilitate non dewa binding
between the ligand and its target receptor. PHAGKiges a built-in set of six pharmacophore feautg/drogen
bond acceptor (A), hydrogen bond donor (D), hydaipb group (H), negatively ionizable (N), posély

ionizable (P), and aromatic ring (R). Based upandtiuctural similarity and the common pharmacojghi@atures
PHASE generates the possible pharmacophore sit¢sefalata set. These generated features wereeflatisigned
for geometrical entities of data set to define jitalschareteristics.

Finding a common pharmacophore

Pharmacophore from all conformations of therddjan the active site are examined and those npdiemphore
that contain identical sets of features wighy similar spatial arrangements are groupegdether and gives
rise to a common pharmacophore. Common pharmacesglawe identified using a tree based partitionéetprique
that grouped together similar pharmacophore acogrtti their inter site distances, i.e., the distanoetween pairs
of sites in the pharmacophore. Active and inactivesholds of plg 5.4 and 5.1, respectively, were applied to the
training set for developing the common pharmacophomotheses. After applying default feature d&éins to
each ligand, common pharmacophore containing siéee generated for scoring the hypothesis.

Scoring Hypotheses

In the score hypotheses step, common pharmacojpherexamined, and a scoring procedure is appliédetatify

the pharmacophore that yields the best alignmenthef active set ligands. This pharmacophore pravide
hypothesis to explain how the active molecules linthe receptor. The scoring procedure providednking of

different hypotheses and allows making rationalic® about hypotheses which is most appropriatefuidher

investigation. Scoring with respect to actives wanducted using default parameters for site, veetod volume
terms. Ligand activity, expressed as 1l{i€so), was incorporated into the score with a gheiof 1.0, rest
with default values. Hypotheses that emerged frtms process were subsequently scored \epeact to
inactive, using a weight of 1.0. The inactivelecules were scored to observe the alignmérnbese

molecules with respect to the pharmacophoretingsis to enable making a decision on the seleafothe

hypothesis. Larger is the difference between tterescof active and inactives better is the oflypsis at
distinguishing the actives from inactives.

Building QSAR model

PHASE provides the means to build QSAR models ugiagctivities of the ligands that match a givgpdthesis.
PHASE QSAR models are based on PLS regressioniedpia a large set of binary valued variables AQS
models were generated based on PLS regressiompgutied to a set of binary variables. Independaniables for
QSAR model were derived from a grid space occupigdraining set of ligands. Based on the type id gpace
occupied, atom types were classified as: D: hyelnelgond donor, H: hydrophobic or nonpolar, N: nigaionic,

P: positive ionic, W: electron-withdrawing (inclusl@ydrogen-bond acceptors), X: miscellaneous takrotypes).

101



Vijjulatha Manga et al J. Chem. Pharm. Res,, 2015, 7(10):100-107

Atom based QSAR models were generated by takingtalhs of the molecule that matched to the hyp@hes
Atom-based QSAR models were generated for AAHRRydothesis using the 29 member training set andcda gr
spacing of 1.8. QSAR models containing one to five PLS factorsengenerated. A model with five PLS factor
was considered as the best statistical model alidhted by predicting activities of test set molesu

Docking studies

Target protein preparation and docking:

The three dimensional crystal structure oblymwligopeptidase(POP) (PDB Id: 3DDU) was dosaded from
the Protein Data Bank PDB) (http://www.rcsb.omggfore docking the ligands into the protein actbite, the
protein was prepared using protein preparation ndizd Schrodinger’s molecular docking softwarethis protein
preparation all water molecules and heteromatwere removed and hydrogen atoms were addedhdo
protein. The active site of the protein was defif@dgenerating the grid. The ligands were thenkddcinto the
prepared grid, for which “standard precision modes selected. No constraints were defined.

RESULTS AND DISCUSSION

A set of 39 molecules having affinity towards POPrevused for 3D QSAR study. Fine grained conforomati
sampling and scoring techniques were utilized &niily common pharmacophore required for critidading with
the receptor. During the conformational samplinghelaypothesis is accompanied by a set of alignafbcmations.
This reflects the relative orientation of moleculdsly bind to the receptor. Later known actividata was
combined with the aligned conformations of the Hiagsis to generate a 3D QSAR model, governed byentr
structure and activity. Pharmacophore models wereld using 29 molecules training set and 10 mdésctest set
of PP and PY analogues of POP (Table 1). AAHHRufexsst (Figure 1) were selected for creating sitesfarther
used in model generation. This five featured hygsithsubjected to stringent scoring function.

For each ligand, one aligned conformer based onldhest Root Mean Square Error (RMSE) of atom
coordinates from those of the reference waperimposed on AAHRR41. Then fithess scof@s all
ligands were observed on the best scored phaphace model AAHRR41. The greater the fithesgescthe
greater will be the activity prediction of the molde. Fithess score also contains a distareen,t which
measures the distance that separates thardeain the molecule from the centroid of thpdihesis feature.
The generated QSAR model is checked for its validitd predictive nature on set of 10 molecules @btdined a
correlation coefficient of 0.913 between experiraémerses predicted activity. A scatter plot of esimental verses
predicted values were plotted for the set of 3%emalles and the same was represented in figure 2.

Figure 1: (a) Pictorial representation of the cubegienerated using the QSAR model of most active malde (21). Blue cubes indicate
favourable regions,while red cubes indicate unfavaable region for the activity. (b) PHASE generatedoharmacophore model
AAHRRA41 of most active molecule (21) illustratinghydrogen bond acceptor (A4; pink), hydrophobic graip (H7; green), aromatic ring
(R 8; orange) features

Actual and predicted activity values of test selanoles (Table-1) exhibited a correlation of 0.2k3R value and
0.652 @ respectively with reported POP inhibitory activitgainst the model AAHRRA41. For a reliable modw, t
squared predictive correlation coefficient sloube >0.6. [19, 20The results of this study reveal that model
AAHRRA41 is reliable and valid for further investigamn of POP activity. The diagrammatic representatdf the
generated fields of QSAR model (figure-1a) revealled favor and disfavored regions of the data $ée
productive information obtained from the analysigdgd to design new molecules with improved intéoas and
predictive activity (table-3).
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Table-1: Structure, biological activity, predictedactivity and fitness score data of PP and PY moletes used in PHASE analysis

Molecule R R? Pred. Fitness Score | Dockscord
pIC50
1 C(O)Me OCHCR; Pyrrolidine 6.233 6.4 1.43 -5.112
2 C(O)Me OCH-4-F-Ph Pyrrolidine 7.275 7.41 1.43 -6.157
3 C(O)Me OCH-4-CR-Ph Pyrrolidine 7.552 7.35 1.4 -7.514
4 C(O)Me OCH-4-OMe-Ph Pyrrolidine 6.853 6.66 1.45 -6.614
5 C(O)Me OCH-4-CI-Ph Pyrrolidine 7.318 7.71 1.4 -5.937
6 C(O)Me OCH-4-CN-Ph Pyrrolidine 6.106 6.43 1.45 -6.344
7 C(O)Me OCH-3,5-F-Ph Pyrrolidine 7.657 7.43 1.43 -6.82
8 C(O)Me OCH-3,4-F-Ph Pyrrolidine 8.154 7.79 1.41 -6.535
9 C(O)Me OCH-3-Cl-4-F-Ph Pyrrolidine 8.096 7.81 1.42 -5.977
10 C(O)Me OCH-3,4-CI-Ph Pyrrolidine| 7.552 7.71 1.42 -5.329
11 SQPh OCH-3,5-F-Ph Pyrrolidine 8.397 8.27 1.42 -5.308
12 SQPh OCH-4-CF-Ph Pyrrolidine 7.958 7.94 1.33 -.6.654
13 SQPh OCH-4-Bu-Ph Pyrrolidine 6.568 6.6 1.37 -5.493
14t H OCH-4-F-Ph Pyrrolidine 7.657 7.47 1.48 -6.644
15t H OCH-3,5-F-Ph Pyrrolidine 7.657 7.52 1.49 -5.776
16 H OCH-3,4-F-Ph Pyrrolidine 7.744 7.47 1.47 -6.846
17t H OCH-2,5-F-Ph Pyrrolidine 7.193 6.63 1.5 -6.881
18 H OCH-4-CR-Ph Pyrrolidine 7.468 7.4 1.46 -6.678
19 H OCH-4-Bu-Ph Pyrrolidine 7.221 7.43 1.41 -5.772
20 H OCH-3,4-F-Ph Pyrrolidine 7.508 7.67 1.5 -6.799
21 C(O)Me (CH),Ph Pyrrolidine|  8.698 9.01 1.55 -6.747
22t C(O)Me (CH)-4-F-Ph Pyrrolidine]  8.522 9.01 156 -6.205,
Cl
NT X
| N
R
e
(e}
Molecule R Oglsgé\éed PLeI?:lgBed Fitness Score Dockscore
23t Cl 5.508 6.86 2.18 -5.495
24 OPh 6 6.07 2.2 -6.430
25 OCH-4-F-Ph 7.397 7.42 1.46 -6.329
26 OCH-3,4-CI-Ph 7.468 7.45 1.57 -6.587
27 OCH-3,4-F-Ph 7.259 7.37 1.47 -7.068
28t OCH,-3-Cl-4-F-Ph 7.366 7.21 1.59 -6.788
29 0O(CH).-3,4-CI-Ph 5.657 5.53 1.36 -7.156
30 OCH-4-Pyridyl 6.096 6.17 1.99 -6.154
31t O(CH,),-4-F-Ph 6.045 6.68 1.06 -7.430
32 OCH-Cyclohexyl 7.154 7.06 2.11 -6.194
33 OCH-4-CR-Ph 6.602 7.11 1.43 -6.628
34 OCH-2,3,5-F-Ph 7.397 7.06 3 -7.118
35 OCH-3-CI-Ph 7.522 7.29 1.6 -6.198
36t NH(CH,).Ph 7.096 7.48 1.11 -6.335
37t NHCH,Ph 7.92 7.67 1.34 -6.574
38 NHCH-4-F-Ph 7.769 7.67 1.33 -6.720
39t NHCH;-3,4-F-Ph 7.823 7.2 1.39 -7.297

t= test set molecule!Bu = tertiary butyl,Ph= Phenyl
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Figure 2: Scatter plot of Experimental and Predictel activities of training and test set moleculesTest set is represented as triangles and

training set is represented as squares)

Docking studies were carried out using Glide [21ddumle in Schrddinger to identify the favorable mtions
between ligand and the receptor molecule. Applieckihg methodology was validated by re-docking ¢hestal
ligand into the generated grid and obtained the RM$S0.687A (Figure 3a). Ligand poses were gendrhsesed on
combined results of position and orientation of ligand relative to the receptor. These generatsep from
hierarchical filtering were analyzed for their irdetion with the receptor. The initial and finahgé of docking
algorithm generated a energy minimized docking dempvith best non bonded ligand - receptor intecact
energy. These were further subjected to the scdtingtion to obtain dock score of the molecule. Pi@#bitor
(molecule-31) showed hydrogen bond interactionk Wip 595 (Figure-3b), of the protein active site.

(b)
Figure 3: (a)Superimposition of crystal structure pse (cyan) on docked pose (Orange) of co-crystadik ligand. The RMS deviation is
0.687 A (b) Dock pose of most active molecule 21osting hydrogen bond interactions with active site mino acid Trp 595
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New molecule design:

Detailed Pharmacophore analysis empowered us tdifigstructural requirements for observed inhibjtactivity.
New molecules were designed based on docking amadmatophore results. Molecules were designed with a
referred substitution at R3 of PP molecules (figtiravith napthyl, ortho substituted benzene andsuited napthyl
groups. These designed molecules were docked the active site and they showed similaerittions with
comparable dock score and predicted activityh wéispect to the most active molecule 21. Figushdwvs dock
pose of newly designed molecule N1, that showshwadrogen bond interactions with the active siteramacids
Arg 643 and Trp 595. Among this, the less substitigimple napthyl derivative has showed a dockesdtthereas
molecule N3 showed good predicted activity andefigy score (table 2) which is in the range of higidyive
molecule. Based on the predicted activity, docke@nd fitness score these were considered as atebjeactive
towards POP inhibition. Designed molecules showedliptable similarity in their activity and dockimgteractions
with reference molecule.

Table 2: Predicted activity, Dock score and Hypothsis fithess score of newly designed molecules

Molecules | Predicted Activity | Dock Score| Fitness Sce
N1 7.562 -8.78 1.337
N2 7.963 -8.004 1.667
N3 8.120 -7.545 1.801
N4 7.858 -7.263 1.586
N5 7.571 -7.262 1.551

Figure 4: Structure of newly designed molecules
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Title: popdes61

Figure 5: Dock pose of new molecule N1 showing hyajen bond interactions with active site amino acid\rg 643 and Trp 595
CONCLUSION

This study shows the generation of a pharmacophmdel AAHRR41 for Pyrrolidinyl Pyridone and Pyragire
analogues as potent inhibitors of Prolyl oligajagse(POP). Pharmacophore modeling correlatesitaegi with
the spatial arrangement of various chemical featurypothesis AAHRR41 represents the best pharntexcep
model for determining POP activity. This pharmdomg model was able to predict POP activitye validation
and docking results also provide additionalfictemce in the proposed pharmacophore model. Resuiggested
that the proposed 3D QSAR model can be use&fulrationally design new POP inhibitors and dtsadentify
new promising molecules as POP inhibitors in I&88Bedatabase of molecules.
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