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ABSTRACT 
 
Prolyl oligo peptidase (POP) is a serine endo peptidase that hydrolyses proline containing peptides with less than 
30 amino acid length. POP enzyme suspected to be involved in several biological functions such as cell 
proliferation, differentiation, signal transduction, Parkinson’s and Alzheimer’s disease. POP inhibitors have been 
developed to restore the depleted neuro peptide levels encountered in aging or in neurodegenerative disorders. 
Sequentially to understand the mechanism of action, pharmacophore analyses and docking studies were performed 
on POP inhibitors. Five point Pharmacophore with pharmacophoric features, two hydrogen bond acceptors (A), 
one hydrophobic group (H) and two aromatic rings (R) was generated with considerable R2 and Q2 values of 0.913 
and 0.652 respectively. The results obtained from this study were used for designing of new POP inhibitors. This 
study further furnishes modest information in the development and investigation of POP inhibitors. 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 

Prolyl oligo peptidase (POP) (EC 3.4.21.26) also known as prolyl endo peptidase (PREP), was identified by Walter 
et al. in the year 1971 from bovine uterus as an oxytocin cleaving enzyme; later it was linked to the hydrolysis of 
neuro peptides. It is a serine protease belongs to the family S9 of the serine carboxy peptidase clan. [1] It has a 
special feature of hydrolysing small proline rich peptides (length less than 30 amino acids) such as neuro peptides, 
arginine-vasopressin (AVP), neurotensin, oxytocin and substance P (SP) etc. It cleaves the -Pro-Xaa- bond at the 
carboxyl side of a proline residue, where Xaa is amino acid other than proline.[2-3] POP family is widely distributed 
in organisms ranging from bacterial species to mammals.[4] It is found in all tissues, but the highest activities have 
been measured in the brain.[5-6] Generally, POP is present in neurons, which use gamma-aminobutyric acid 
(GABA) and acetylcholine (ACh) as neurotransmitters rather than dopamine.[7] Due to its locality and importance 
in neuropeptide break-down, POP enzyme has associated to CNS diseases related to neuropeptidergic malfunction 
[8] such as depression, Parkinson’s, Alzheimer’s diseases[1], amnesia, schizophrenia, trypanosomiasis, bipolar 
affective disorder etc. In animals, the role of POP was observed to control peptide signalling pathways and has been 
extensively studied. The inhibitors of POP restore the altered activity of neural network and adjust neuropeptides 
levels to normal.  
 
The present work highlights pharmacophore modelling and docking analysis of Pyrrolidinyl Pyridone (PP) and 
Pyrazinone (Py) analogues of POP inhibitors. Pharmacophore [9] is an important model in rational drug design that 
exemplifies the geometry complementary of drug to the target. Pharmacophore hypothesis collects common features 
distributed in three-dimensional space that participate in important interactions between drug and active site. Atom 
based 3D- pharmacophore model [10, 11] and docking was performed with a series of PP and PY analogues of   
Prolyl oligo peptidase [12] with PHASE [13] and Glide modules respectively. PHASE (Pharmacophore Alignment 
and Scoring Engine) is a flexible module for pharmacophore identification, assessment, model development [14, 15] 
database construction and searching [16].   
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Glide (Grid Based Ligand Docking with Energetics) has been designed to perform an exhaustive search of the 
positional, orientation and conformational space available to the ligand based on energy of the system. Docking 
study was applied with a series of hierarchical filters to search for possible sites of the ligand in the active site region 
of the receptor. The objective of the present study is to fabricate reliable and modest information required for the 
design of new inhibitors towards POP.  
 

EXPERIMENTAL SECTION 
 

A dataset comprising of 39 molecules (Table-1) was used and its in vitro biological activity data reported as IC50 
values were converted to pIC50. A total of 39 molecules were available with pIC50 values, of which 29 molecules 
were randomly chosen as training set and 10 molecules were selected as test sets to accommodate structural 
diversity in model generation. 
 
Computational details for 3D QSAR 
The 3D conversion and minimization was performed using LigPrep [17] with OPLS2005 force field [18] 
incorporated in PHASE. Pharmacophore model development requires all-atom 3D structures that are realistic 
representations of the experimental molecular   structure something close to the putative binding mode. Hence, 
conformers were generated using a rapid torsion angle search followed by minimization of each generated structure 
using OPLS2005 force field, with implicit distance dependent dielectric solvent model. A maximum of 1000 
conformers were generated per structure using a pre process minimization of 100 steps and post process 
minimization of 50 steps. Each  minimized conformer  was  filtered  through  a  relative  energy  window  of  10 
kCal/mol and RMSD of 1.00 Ǻ. 
 
Creating pharmacophore sites 
Each  ligand  structure  is  represented  by  a  set of points in 3D space,  that facilitate  non covalent  binding 
between the ligand and its target receptor. PHASE provides a built-in set of six pharmacophore features, hydrogen 
bond acceptor (A), hydrogen bond donor (D), hydrophobic  group (H), negatively  ionizable (N), positively  
ionizable (P), and aromatic ring (R). Based upon the structural similarity and the common pharmacophoric features 
PHASE generates the possible pharmacophore sites for the data set. These generated features were further assigned 
for geometrical entities of data set to define physical chareteristics. 
 
 Finding a common pharmacophore 
Pharmacophore  from  all  conformations of the ligand in the active site are examined and  those  pharmacophore 
that  contain  identical  sets  of  features  with very similar spatial  arrangements  are  grouped  together and gives 
rise to a common pharmacophore. Common pharmacophores are identified using a tree based partitioning technique 
that grouped together similar pharmacophore according to their inter site distances, i.e., the distances between pairs 
of sites in the pharmacophore. Active and inactive thresholds of pIC50 5.4 and 5.1, respectively, were applied to the 
training set for developing the common pharmacophore hypotheses. After applying default feature definitions to 
each ligand, common pharmacophore containing sites were generated for scoring the hypothesis. 
 
Scoring Hypotheses 
In the score hypotheses step, common pharmacophore are examined, and a scoring procedure is applied to identify 
the pharmacophore that yields the best alignment of the active set ligands. This pharmacophore provides a 
hypothesis to explain how the active molecules bind to the receptor. The scoring procedure provided a ranking of 
different hypotheses and allows making rational choices about hypotheses which is most appropriate for further 
investigation. Scoring with respect to actives was conducted using default parameters for site, vector, and volume 
terms. Ligand  activity, expressed  as -log10(IC50), was incorporated  into  the  score  with  a  weight  of  1.0, rest 
with default values. Hypotheses that  emerged  from  this  process  were  subsequently  scored  with respect to 
inactive, using  a  weight  of  1.0. The inactive molecules  were  scored  to observe  the  alignment of these  
molecules  with  respect  to  the pharmacophore hypothesis to enable making a decision on the selection of the 
hypothesis. Larger is the difference between the scores of active and  inactives  better  is  the  hypothesis  at  
distinguishing  the actives from inactives. 
 
Building QSAR model 
PHASE provides the means to build QSAR models using the activities of the ligands that match a given hypothesis. 
PHASE QSAR models are based on PLS regression, applied to a large   set of binary valued variables. QSAR 
models were generated based on PLS regression, and applied to a set of binary variables. Independant variables for 
QSAR model were derived from a grid space occupied by training set of ligands. Based on the type of grid space 
occupied, atom types were classified as:  D: hydrogen-bond donor, H: hydrophobic or nonpolar, N: negative ionic, 
P: positive ionic, W: electron-withdrawing (includes hydrogen-bond acceptors), X: miscellaneous (all other types). 
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Atom based QSAR models were generated by taking all atoms of the molecule that matched to the hypothesis. 
Atom-based QSAR models were generated for AAHRR41 hypothesis using the 29 member training set and a grid 
spacing of 1.0Ǻ. QSAR models containing one to five PLS factors were generated. A model with five PLS factor 
was considered as the best statistical model and validated by predicting activities of test set molecules. 
 
Docking studies 
Target protein preparation and docking: 
The  three  dimensional  crystal  structure  of  Prolyl oligopeptidase(POP)  (PDB Id: 3DDU) was  downloaded  from  
the  Protein  Data  Bank PDB) (http://www.rcsb.org). Before docking the ligands into the protein active site, the 
protein was prepared using protein preparation wizard of Schrodinger’s molecular docking software. In this protein 
preparation  all  water  molecules  and  hetero  atoms were removed and hydrogen atoms were  added  to  the  
protein. The active site of the protein was defined for generating the grid. The ligands were then docked into the 
prepared grid, for which “standard precision mode” was selected. No constraints were defined. 
 

RESULTS AND DISCUSSION 
 
A set of 39 molecules having affinity towards POP were used for 3D QSAR study. Fine grained conformational 
sampling and scoring techniques were utilized to identify common pharmacophore required for critical binding with 
the receptor. During the conformational sampling each hypothesis is accompanied by a set of aligned conformations. 
This reflects the relative orientation of molecules likely bind to the receptor. Later known activity data was 
combined with the aligned conformations of the hypothesis to generate a 3D QSAR model, governed by molecular 
structure and activity. Pharmacophore models were derived using 29 molecules training set and 10 molecules test set 
of PP and PY analogues of POP (Table 1). AAHHR features (Figure 1) were selected for creating sites and further 
used in model generation. This five featured hypothesis subjected to stringent scoring function. 
 
For each ligand, one aligned conformer based on the lowest Root Mean Square Error (RMSE)  of    atom  
coordinates  from  those  of  the    reference  was  superimposed  on  AAHRR41. Then  fitness  scores  for  all 
ligands were observed on the  best  scored  pharmacophore  model  AAHRR41. The greater the fitness score, the 
greater will be the activity prediction of the molecule. Fitness score  also  contains  a  distance  term,  which  
measures  the  distance  that  separates  the  feature  on  the  molecule  from the centroid of the hypothesis feature. 
The generated QSAR model is checked for its validity and predictive nature on set of 10 molecules and obtained a 
correlation coefficient of 0.913 between experimental verses predicted activity. A scatter plot of experimental verses 
predicted values were plotted for the set of 39 molecules and the same was represented in figure 2. 
 

      
(a)                                                                         (b) 

Figure 1: (a) Pictorial representation of the cubes generated using the QSAR model of most active molecule (21). Blue cubes indicate 
favourable regions,while red cubes indicate unfavourable region for the activity. (b) PHASE generated pharmacophore model 

AAHRR41 of most active molecule (21)   illustrating hydrogen bond acceptor (A4; pink), hydrophobic group (H7; green), aromatic ring 
(R 8; orange) features 

 
Actual and predicted activity values of test set molecules (Table-1) exhibited a correlation of 0.913 as R2 value and 
0.652 Q2 respectively with reported POP inhibitory activity against the model AAHRR41. For a reliable model, the 
squared predictive  correlation  coefficient  should  be >0.6. [19, 20] The  results of this study reveal that model 
AAHRR41 is reliable and valid for further investigation of POP activity. The diagrammatic representation of the 
generated fields of QSAR model (figure-1a) revealed the favor and disfavored regions of the data set. The 
productive information obtained from the analysis guided to design new molecules with improved interactions and 
predictive activity (table-3). 
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Table-1: Structure, biological activity, predicted activity and fitness score data of  PP and PY molecules used in PHASE analysis 
 

N
R

2

O

R
1

O
R

3

 

Molecule R1 R2 R3 Expt. 
pIC50 

Pred. 
pIC50 Fitness Score Dockscore 

1 C(O)Me OCH2CF3 Pyrrolidine 6.233 6.4 1.43 -5.112 
2 C(O)Me OCH2-4-F-Ph Pyrrolidine 7.275 7.41 1.43 -6.157 
3 C(O)Me OCH2-4-CF3-Ph Pyrrolidine 7.552 7.35 1.4 -7.514 
4 C(O)Me OCH2-4-OMe-Ph Pyrrolidine 6.853 6.66 1.45 -6.614 
5 C(O)Me OCH2-4-Cl-Ph Pyrrolidine 7.318 7.71 1.4 -5.937 
6 C(O)Me OCH2-4-CN-Ph Pyrrolidine 6.106 6.43 1.45 -6.344 
7 C(O)Me OCH2-3,5-F-Ph Pyrrolidine 7.657 7.43 1.43 -6.82 
8 C(O)Me OCH2-3,4-F-Ph Pyrrolidine 8.154 7.79 1.41 -6.535 
9 C(O)Me OCH2-3-Cl-4-F-Ph Pyrrolidine 8.096 7.81 1.42 -5.977 
10 C(O)Me OCH2-3,4-Cl-Ph Pyrrolidine 7.552 7.71 1.42 -5.329 
11 SO2Ph OCH2-3,5-F-Ph Pyrrolidine 8.397 8.27 1.42 -5.308 
12 SO2Ph OCH2-4-CF3-Ph Pyrrolidine 7.958 7.94 1.33 -.6.654 
13 SO2Ph OCH2-4-tBu-Ph Pyrrolidine 6.568 6.6 1.37 -5.493 
14 t H OCH2-4-F-Ph Pyrrolidine 7.657 7.47 1.48 -6.644 
15 t H OCH2-3,5-F-Ph Pyrrolidine 7.657 7.52 1.49 -5.776 
16 H OCH2-3,4-F-Ph Pyrrolidine 7.744 7.47 1.47 -6.846 
17 t H OCH2-2,5-F-Ph Pyrrolidine 7.193 6.63 1.5 -6.881 
18 H OCH2-4-CF3-Ph Pyrrolidine 7.468 7.4 1.46 -6.678 
19 H OCH2-4-tBu-Ph Pyrrolidine 7.221 7.43 1.41 -5.772 
20 H OCH2-3,4-F-Ph Pyrrolidine 7.508 7.67 1.5 -6.799 
21 C(O)Me (CH2)2Ph Pyrrolidine 8.698 9.01 1.55 -6.747 
22 t C(O)Me (CH2)2-4-F-Ph Pyrrolidine 8.522 9.01 1.56 -6.205 

N

N

R

O

Cl

O
N

 

Molecule R 
Observed 

pIC50 
Predicted 

pIC50 Fitness Score Dockscore 

23t Cl 5.508 6.86 2.18 -5.495 
24 OPh 6 6.07 2.2 -6.430 
25 OCH2-4-F-Ph 7.397 7.42 1.46 -6.329 
26 OCH2-3,4-Cl-Ph 7.468 7.45 1.57 -6.587 
27 OCH2-3,4-F-Ph 7.259 7.37 1.47 -7.068 
28 t OCH2-3-Cl-4-F-Ph 7.366 7.21 1.59 -6.788 
29 O(CH2)2-3,4-Cl-Ph 5.657 5.53 1.36 -7.156 
30 OCH2-4-Pyridyl 6.096 6.17 1.99 -6.154 
31 t O(CH2)2-4-F-Ph 6.045 6.68 1.06 -7.430 
32 OCH2-Cyclohexyl 7.154 7.06 2.11 -6.194 
33 OCH2-4-CF3-Ph 6.602 7.11 1.43 -6.628 
34 OCH2-2,3,5-F-Ph 7.397 7.06 3 -7.118 
35 OCH2-3-Cl-Ph 7.522 7.29 1.6 -6.198 
36 t NH(CH2)2Ph 7.096 7.48 1.11 -6.335 
37 t NHCH2Ph 7.92 7.67 1.34 -6.574 
38 NHCH2-4-F-Ph 7.769 7.67 1.33 -6.720 
39 t NHCH2-3,4-F-Ph 7.823 7.2 1.39 -7.297 

t= test set molecules, tBu = tertiary butyl, Ph = Phenyl 
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Figure 2: Scatter plot of Experimental and Predicted activities of training and  test set molecules. (Test set is represented as triangles and 
training set is represented as squares) 

  
Docking studies were carried out using Glide [21] module in Schrödinger to identify the favorable interactions 
between ligand and the receptor molecule. Applied docking methodology was validated by re-docking the crystal 
ligand into the generated grid and obtained the RMSD of 0.687Å (Figure 3a). Ligand poses were generated based on 
combined results of position and orientation of the ligand relative to the receptor. These generated poses from 
hierarchical filtering were analyzed for their interaction with the receptor. The initial and final stage of docking 
algorithm generated a energy minimized docking complex with best non bonded ligand - receptor interaction 
energy. These were further subjected to the scoring function to obtain dock score of the molecule. POP inhibitor 
(molecule-31) showed hydrogen bond interactions with Trp 595 (Figure-3b), of the protein active site. 
 

 
(a) 

 
 (b) 

Figure 3: (a)Superimposition of crystal structure pose (cyan) on docked pose (Orange) of co-crystallized ligand. The RMS deviation is 
0.687 Å (b) Dock pose of most active molecule 21 showing hydrogen bond interactions with active site amino acid Trp 595 
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New molecule design: 
Detailed Pharmacophore analysis empowered us to identify structural requirements for observed inhibitory activity. 
New molecules were designed based on docking and pharmacophore results. Molecules were designed with a 
referred substitution at R3 of PP molecules (figure 4) with napthyl, ortho substituted benzene and substituted napthyl 
groups. These designed  molecules were  docked  into  the  active site and  they  showed  similar  interactions  with 
comparable dock score  and  predicted  activity with respect to the most active molecule 21. Figure 5 shows dock 
pose of newly designed molecule N1, that shows two hydrogen bond interactions with the active site amino acids 
Arg 643 and Trp 595. Among this, the less substituted simple napthyl derivative has showed a dock score. Whereas 
molecule N3 showed good predicted activity and fitness score (table 2) which is in the range of highly active 
molecule. Based on the predicted activity, dock score and fitness score these were considered as moderately active 
towards POP inhibition. Designed molecules showed predictable similarity in their activity and docking interactions 
with reference molecule.  
 

Table 2: Predicted activity, Dock score and Hypothesis fitness score of  newly designed molecules 
 

Molecules Predicted Activity Dock Score Fitness Score 
N1 7.562 -8.78 1.337 
N2 7.963 -8.004 1.667 
N3 8.120 -7.545 1.801 
N4 7.858 -7.263 1.586 
N5 7.571 -7.262 1.551 

                                                   

 
Figure 4: Structure of newly designed molecules 
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Figure 5:  Dock pose of new molecule N1 showing hydrogen bond interactions with active site amino acid Arg 643 and Trp 595 
 

CONCLUSION 
 

This study shows the generation of a pharmacophore model AAHRR41 for Pyrrolidinyl Pyridone and Pyrazinone 
analogues as potent inhibitors of   Prolyl oligopeptidase(POP). Pharmacophore modeling correlates activities with 
the spatial arrangement of various chemical features. Hypothesis AAHRR41 represents the best pharmacophore 
model for determining POP activity. This  pharmacophore  model  was  able  to predict  POP activity;  the validation 
and docking  results  also  provide  additional confidence in the proposed pharmacophore  model. Results  suggested  
that  the  proposed  3D QSAR  model can be useful  to  rationally  design new POP inhibitors and also to identify 
new promising molecules as POP inhibitors in large 3D database of  molecules. 
 
Acknowledgements 
We gratefully acknowledge support for this research from Council of Scientific and Industrial Research, University 
Grants Commission India, Department of Science and Technology, India and Department of chemistry, University 
College of Science, Osmania University, Hyderabad.  
 

REFERENCES 
 

[1] ND Rawlings; AJ Barrett; Methods Enzymol., 1994, 244, 19-61. 
[2] DF Cunningham; B O'Connor; Biochim Biophys Acta., 1997, 1343(2), 160-186. 
[3] Polgar L; Cell Mol Life Sci., 2002, 59(2), 349-362. 
[4] JI Venäläinen; RO Juvonen; PT Männistö; Eur J Biochem., 2004, 271(13), 2705-2715. 
[5] T Kato; M Okada; T Nagatsu; Mol Cell Biochem., 1980, 32(3), 117-121. 
[6] J Irazusta, G Larrinaga, J Gonzalez-Maeso, J Gil, JJ Meana, L Casis; Neurochem Int., 2002, 40(4), 337-345. 
[7] TT Myöhänen, JI Venäläinen, JA García-Horsman, M Piltonen, PT Männistö; J Comp Neurol., 2008, 507(5), 
1694-1708. 
[8] JA García-Horsman; PT Männistö, JI Venäläinen; Neuropeptides., 2007, 41(1), 1-24. 
[9] YY Sheng; Drug Discov Today, 2010, 15(11-12), 444 - 50. 
[10] TT Talele; SS Kulkarni; VM Kulkarni; J. Chem. Inf. Comput. Sci,. 1999, 39, 958-966. 
[11] RG Karki; VM Kulkarni; Eur. J. Med. Chem., 2001, 36, 147- 163 
[12] DH Curt; JD Caroline; BM Aaron; AR Robert; PM Kevin; Bioorg. Med. Chem.Lett., 2008, 18, 4360–4363. 
[13]  Phase, version 3.0; Schrödinger, L. L. C.: New York, USA. 



Vijjulatha Manga  et al J. Chem. Pharm. Res., 2015, 7(10):100-107 
______________________________________________________________________________ 

107 

[14]  M Mader; A de Dios; C Shih; R Bonjouklian; T Li; W White; B López de Uralde; C Sánchez-Martinez; M del 
C Prado; Jaramillo; E de Diego; LM Martín Cabrejas; C Dominguez; C Montero; T Shepherd; R Dally; JE Toth; A 
Chatterjee; S Pleite; J Blanco-Urgoiti; L Perez; M Barberis; MJ Lorite; E Jambrina; CR Nevill. Jr; PA Lee; RC 
Schultz; JA Wolos; LC Li; RM Campbell; BD Anderson; Bioorg. Med. Chem. Lett., 2008, 18, 179-183. 
[15]  A de Dios; C Shih; B López de Uralde; C Sánchez-Martinez; M del C Prado; LM Martín Cabrejas; S Pleite; J 
Blanco-Urgoiti; MJ Lorite; CR Nevill. Jr;  R Bonjouklian; J York; M Vieth; Y Wang; N Magnus; RM Campbell; 
BD Anderson; DJ McCann; DD Giera; PA Lee; RC Schultz; LC Li; LM Johnson; JA Wolos; J. Med. Chem., 2005, 
48, 2270-2273. 
[16]  SL Dixon; AM Smondyrev; EH Knoll; SN Rao; DE Shaw; RA Friesner;  J. Comput. Aided Mol. Des., 2006, 
20, 647–671. 
[17]  LigPrep, version 2.0, Schrödinger, LLC, New York, NY, 2010 
[18]  WL Jorgensen; DS Maxwell; J Tirado-Rives; J. Am. Chem. Soc., 1996, 118, 11225-11236. 
[19]  H Dureja; V Kumar; S Gupta; AK Madan; J. Theo. Comput. Chem., 2007, 6(3), 435–448. 
[20]  S Wold; Quant. Struct. Act. Relat., 1991, 10, 191-193. 
[21]  Glide, version 5.6, Schrödinger, LLC, New York, NY, 2010. 
 


