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ABSTRACT

Janus kinase 2 plays a critical rolein JAK/STAT signaling pathways, and has a central rolein céll cycle. JAK2 have
emerged as a novel therapeutic target of myeloproliferative disorders, autoimmune diseases, essential
thrombocytosis, and small molecular inhibition of JAK2 activity developed into an impressive drug target. For a
series of JAK2 inhibitors pharmacophore model and atom-based 3D-QSAR models have been devel oped, to identify
the essential structural features required for these JAK2 inhibitors using the PHASE module of Schrodinger. A five
featured pharmacophore hypothesis with three hydrogen bond acceptors, one hydrogen bond donor and one
aromatic ring provided a best atom-based 3D-QSAR model. The developed 3D-QSAR model have good statistical
predictive values as RZ = 9659, Q? = 0.5679 and effective Pearson R = 0.9405. The results illustrate the structural
information of substituted aromatic bicyclic compounds containing pyrimidine and pyridine rings, which might be
supportive for further rational design of novel potent Janus kinase 2 inhibitors.
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INTRODUCTION

Janus kinases, JAK1, JAK2, JAK3 and TYK2 are a famf nonreceptor tyrosine kinases, which playsitical
role in cytokine signaling, growth factor mediatsiginal transduction, cell proliferation and immuresponse
pathways [1-4]. JAK family members consist of sed@i homology (JH1-JH7) regions with a C-terminatadytic
domain and a N-terminal FERM domain [5, 6]. RembhkaJanus kinase 2 has become a significant teetap
target due to the discovery of single somatic nma(JAK2 V617F) in pseudokinase (JH2) domain @id it's
over expression induced constant active JAK/STAgnaling in most of the patents with myeloproliférat
disorders [8-10], polycythemia vera (PV) [11], heéobagic and solid malignancies [12-14], essential
thrombocythemia (ET) [15] and autoimmune diseaddd, [etc. These observations invoked various medici
chemistry and clinical studies in an identificatioinpotent JAK2 inhibitors. At present some of #mall molecular
inhibitors (namely, Ruxolitinib [17, 18], CYT-3819], Pacritinib [20], NS-018 [21], AZD1480 [22], N%*BSK805
& NVP-BVB808 [23], XL019 [24], CEP701 [25], LY2784% [26], and others [27]) entered into clinicalg&a
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against myelofibrosis (MF) and other disorders. ¢¢erdevelopment of novel small molecular inhibitagainst
Janus kinase 2 protein activities has gained irapcH.

The in-silico molecular modeling studies providepbhetical information on identification of specifstructural
features that required for small molecular inhitstavhich play vital roles in biological activitphibition. The main
objective of the present study is to develop phaophore models and atom-based 3D-QSAR modelsderias of
compounds and to determine the required essentigdtgral features against Janus kinase 2 prowinities [28,
29]. PHASE v3.1 [30], which is incorporated in mae®.0 (Schrodinger 2009) was used for pharmacephwdel
and 3D-QSAR model development studies. Due to th@neon structural frame work of the molecules, we
developed atom-based 3D-QSAR models using a daih&8attraining set and seven test set compounds.

EXPERIMENTAL SECTION

MODELLING METHODS

Dataset

A set of 29 known substituted aromatic bicyclic gamunds containing pyrimidine and pyridine ringshvtAK2

inhibitory activity were selected for the presetudy based on a thorough literature survey [31]e Themical
structures of the molecules were drawn using MDISIBraw (Table 1). Igy values were converted into gfas
shown in Table 2. The total data set molecules wasided randomly into 75% of 22 training set ari¥2of seven
test set molecules. The randomized division of wuks was done over several runs in order to dpvedést 3D-
QSAR models.

Table: 1 Chemical structure of the dataset molecute

QQI) 1,

Comp. Ry Rs3
1 4-(2-(4-methylpiperazn-1-yl)-2-oxoethyl)pheny C C CH3 3-(trifluoromethyl)pheny
2 4-(4-methylpiperazin-1-yl)phenyl C=0 GH 3-(trifluoromethyl)phenyl
3 4-(1-methylpiperidin-4-ylcarbamoyl)phenyl @H CH;  3-(trifluoromethyl)phenyl
4 pyrimidin-5-yl CH CH; 3-(trifluoromethyl)phenyl
5 4-(pyrrolidine-1-carbonyl)phenyl CH CH; 3-(trifluoromethyl)phenyl
6 4-(2-(pyrrolidin-1-yl)ethoxy)phenyl CH CH; 5-(trifluoromethyl)thiophene-2-yl
7 4-(2-(pyrrolidin-1-yl)ethoxy)phenyl CH CH; piperidine-1-yl
8 4-(2-(pyrrolidin-1-yl)ethoxy)phenyl CH CH; 3,3,3-trifluoro-prop-1-yl
9 4-(4-methylpiperazin-1-yl)phenyl C=0 Cl 3-(triltomethyl)phenyl
10 4-(4-methylpiperazine-1-carbonyl)phenyl £H CH;  3,3,3-trifluoro-prop-1-yl
11 4-(N-cyclopropylsulfamoyl)phenyl CH CH; 3-(trifluoromethyl)phenyl
12 4-(4-methylpiperazin-1-yl)phenyl C=0 G@H A4-(trifluoromethyl)pyridine-2-yl
13 4-(4-methylpiperazine-1-carbonyl)phenyl £H CH;  4-(trifluoromethyl)pyridine-2-yl
14 4-(4-methylpiperazine-1-carbonyl)phenyl C=0 CHA4-(trifluoromethyl)pyridine-2-yl
15 4-(4-methylpiperazin-1-yl)phenyl C=0 Cl  3-fluese(trifluoromethyl)phenyl
16 4-(4-methylpiperazin-1-yl)phenyl GH CI  3-(trifluoromethyl)phenyl
17 4-(methylcarbamoyl)phenyl GH CI  3-(trifluoromethyl)phenyl
18 4-(methylcarbamoyl)phen CH, CI  3-fluoro-5-(trifluoromethyl)phen:
19 4-(methylcarbamoyl)phenyl GH Cl  4-(trifluoromethyl)pyridine-2-yl
20 4-(4-methylpiperazin-1-yl)phenyl C=0 @H 3-chloro-5-(trifluoromethyl)phenyl
21 4-(4-methylpiperazin-1-carbonyl)pheny CH, CH; 3-(trifluoromethyl)pheny
22 4-(2-(pyrrolidin-1-yl)ethoxy)phenyl C=0 GH 3-(trifluoromethyl)phenyl
23 3-((4-methylpiperazin-1-yl)methyl)phenyl G@H CH;  3-(trifluoromethyl)phenyl
24 4-(4-methylpiperazi-1-yl)pheny C=C CH; 3-bromopheny
25 4-(2-(pyrrolidin-1-yl)ethoxy)phenyl CH CH; cyclopentylamino

26 w CH, CHs 3-(trifluoromethyl)phenyl

—N N

27 4-(2-(pyrrolidin-1-yl)ethoxy)phenyl CH CH /\O
NN |
28 —Qu — CH, CH; 3-(trifluoromethyl)phenyl

29 >—<\} CH, CH; 3-(trifluoromethyl)phenyl
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Ligand Preparation

The chemical structure of the dataset moleculeg weawn using ISIS Draw. The conversion of chemstraictures
from 2D to 3D, hydrogen addition and energy miniizn of all molecules at OPLS-2005 force field wiasme by
using LigPrep module [32]. For each molecule, a imam of 2000 conformers were generated using Mixed
MCMM/LMOD Search Method as implemented in MacroMbdethod [33] with an OPLS-2005 force field and
distance-dependent dielectric solvent model. Alé tbonformers developed were minimized using TNCG
minimization up to 500 iterations. For each molecal set of minimized conformers with maximum ige&energy
difference of 10 kcal/mol was retained at RMSD @fQlA.

Pharmacophore & 3D-QSAR model generation

Pharmacophore model was developed by Phase meddéfault structure with six built-in pharmacophteatures
namely hydrogen bond acceptor (A), hydrogen bontbddD), hydrophobic group (H), negatively charggdup
(N), positively charged group (P) and an aromaitig KR) were applied for creation of pharmacophsites. The
pharmacophore features were interpreted using smaeries as one of the three possible geometRemt, Vector
or Group representing the physical characteristicshe pharmacophore site. The confirmation of #utivity
thresholds defined five active compounds @l€= 8.200) and 11 inactive compounds (pl€= 7.450), which are
to be used for pharmacophore modeling and substqeeming. The common pharmacophores (CPHs) were
identified using a tree-based partition algorithithvea maximum tree depth of five with an intersiistance of 2 A.
The final size of pharmacophore box which goveims tolerance on matching was 1 A. The default agori
hypotheses parameters were applied for examinafidine CPHs in order to yield the best alignmenthaf active
ligands.

Atom-based 3D-QSAR models were generated for thexteel CPHs using a set of 22 training moleculet i
grid spacing of 1.0 A, random seed value of zerd six PLS factors. The developed 3D-QSAR modelsewer
validated by predicting activities of the severt s=t molecules.

Table: 2. 3D-QSAR predicted activity of training ard test set compounds

Comp. QSAR Set Experimental Activity Predicted Actvity Pharm Set  Fitness Score

1 Training 7.215 7.18 Inactive 2.45
2 Training 7.347 7.36 Inactive 2.46
3 Training 8.155 8.15 2.76
4 Training 7.721 7.64 2.62
5 Test 7.854 7.84 2.63
6 Test 7.745 791 2.64
7 Training 7.39¢ 7.4% Inactive 2.6

8 Training 7.678 7.74 2.58
9 Training 8.222 8.1 Active 2.47
10 Training 7.33% 7.3¢ Inactive 2.5¢
11 Test 7.268 7.78 Inactive 2.52
12 Training 7.319 7.56 Inactive 2.45
13 Training 8.27¢ 8.2 Active 3

14 Training 7.155 7.08 Inactive 2.52
15 Training 8.046 7.98 2.4
16 Test 8.056 8.07 2.82
17 Training 7.824 7.82 2.81
18 Training 8 8 2.68
19 Training 8.194 8.21 2.57
20 Training 7.444 7.44 Inactive 2.38
21 Training 8.523 8.57 Active 2.92
22 Test 7.081 7.42 Inactive 2.37
23 Training 7.553 7.54 2.6
24 Test 7.356 7.69 Inactive 2.43
25 Training 8.398 8.41 Active 2.69
26 Training 7.495 7.49 Inactive 2.66
27 Training 7.921 7.99 2.66
28 Test 8.301 8.22 Active 2.8
29 Training 8.097 7.95 2.77
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RESULTS AND DISCUSSION

Pharmacophore modeling and atom-based 3D-QSARestudere performed on a series of specified organic
molecules to determine the importance of specifiectural features of JAK2 inhibitors required fbe biological
activity. The PHASE predicted activity and fithesdues were shown in Table 2.

Pharmacophore validation

To generate the common pharmacophore hypothesiglata set was divided into five active compoumpd€s >=
8.200) and 11 inactive compounds (gJ€= 7.450) and the rest of the molecules as modgratgive with four
minimum sites and five maximum sites. We develogédfive featured CPHs with different combination of
variants. From these, five best CPHs namely, AAABRDPDR, AADHR, ADDHR and ADDRR were chosen for
3D-QSAR model development based on the scoringtifm@and alignment of the active compounds. An atom
based 3D-QSAR model was developed to the respeCilds using twenty two training and seven test moés
with four PLS factors. A summary of quantitativeusture-activity relationship (QSAR) results foretfive best
CPHs is shown in table 3.

Table: 3. Statistical analysis of the selected 3DSAR model.

AAADR AADDR AADHR ADDHR ADDRR

SD 0.0854 0.0808 0.0477 0.0747 0.0456
R2 0.9659 0.9695 0.9894 0.9739 0.9903
F 120.4 135 395 158.7 433.1

P 3.12E-12 1.22E-12 1.60E-16 3.21E-13 7.39E-17
RMSE 0.2715 0.3176 0.313 0.2726 0.3218
Q2 0.5679 0.4085 0.4253 0.5643 0.3928

Pearson R 0.9405 0.8964 0.6597 0.8422 0.7361
SD, Sandard deviation of the regression; R?, correlation coefficient; F, variance ratio; P, significance level of variance ratio; RMSE, root mean-
sguare error; Q2, predictive coefficient of the test set; Pearson R, Correlation between the predicted and observed activity for the test set.

o). d).

Figure: 1. The best AAADR hypothesis model; a. Aligment of the most active compounds; b. Alignment dhe most active compound 13
(highest fitness value = 3); c. Scatter alignment ¢he inactive compounds; d. Distances between diffent sites described in A

The generated five 3D-QSAR models were evaluatéagudifferent statistical parameters?(RY, SD, RMSE,
Pearson R and F) to find the best 3D-QSAR modet Aypothesis AAADR, has shown good Walue of 0.9659
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for the training set and a predictive potentialw@ value of 0.5679, low RMSE value of 0.2715 and bith
Pearson R value of 0.9405. Thus, AAADR hypothesth three hydrogen bond acceptors (A), one hydrdgsmd

donor (D) and one aromatic ring (R) as pharmacdpheatures was selected as the best CPH modelbé&se
hypothesis (AAADR) of the 3D-QSAR model generatisishown in Figure 1. The scatter plot for the presdi and
experimental activity of training and test set connpds is shown in Figure 2.
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Figure 2. Correlation between predicted (plGyg) and phase activity (plGy) of training and test set compounds

QSAR Visualization

The generated counter cubes describe the esskeatiates that play a vital role in interactionsvien ligand and
the active domain of the JAK2 protein. A visual negentation of the contours generated for the raotve
compound 13 and the least active compound 22 isnrshio Figure 3 and 4 respectively. In this illusiva, blue
cubes indicate favourable regions and red cubedsatelunfavourable regions of substituent groujseiasing the
activity. The cubes generated for different propsersuch as electron withdrawing, hydrophobic, bgén bond
donor and combined effect of the most active comgo3 and the least active compound 22 with AAADR
hypothesis is shown in Figure 3a-d, Figure 4a-geetvely.

c).
Figure 3. Atom-based 3D-QSAR model visualization of the mostctive compound 13 with AAADR hypothesis; a. electm withdrawing
feature; b. hydrophobic features and c. combined &ct
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c).
Figure 4. Atom-based 3D-QSAR model visualization of the leastctive compound 22 with AAADR hypothesis a. eleabn withdrawing
feature; b. hydrophobic features and c. combined &ct

The contour cubes generated for electron withdrgviatures of most active compound 13 (Fig. i@aeals the
importance of 4-methylpiperazin-1-yl on inhibitimf JAK2 activity. The presence of blue cubes at gl A3
shows the favorable regions of electron withdravigegures and the substitution of electron withdnavfeatures at
these positions (A2, A3 & 4-methylpiperazin-1-ybgp) are acceptable and enhance the activity oédhgounds.
The addition of electron withdrawing features atigiyjme moiety and A5 may not enhance the inhibitaciivity of
the compounds due to the presence of red cubeshvimilicate the unfavorable regions. Fig. 3b, thesence of
blue cubes at 4-[(4-methylpiperazin-1-yl)carbonyfjhenyl group attached to the bicyclic ring and
trifluoromethylpyridine group attached to carboxdeigroup represent the favourable regions of hywbie
features of the compounds. Fig. 3c. illustrates dbmbined effect of all features of the most actbeenpound,
which represents the presence of blue cubes at4-mfthylpiperazin-1-yl)carbonyllphenyl and
trifluoromethylpyridine groups as the favourablgioms of the compound.

Likewise, contour cubes generated for electron dviving features (Fig. 4a), hydrophobic featureg.(Bb) and
combined feature@~ig. 4b)of the least active compound 22 indicate the presehtdue cubes as the favourable
regions and also the addition of suitable electithdrawing groups and hydrophobic groups, respelj at this
positions may enhance the activity of the compouHfte red cubes indicate the unfavourable regionshef
compound. On comparison of the contour cubes gteterfr electron withdrawing features and hydroptiob
features of the most active 13 and least activec@pounds, it evidently shows that the presencd-[{#-
methylpiperazin-1-yl)carbonyl] phenyl and trifluenethylpyridine groups on bicyclic ring moiety enhanthe
JAK2 inhibitory activity of the compounds. Due tewetlack of above specified groups, compound 22 rhedass
active. Thus, it is recommended that the additiosuitable electron withdrawing groups and hydrdgbaroups at
the favourable regions (blue cubes) will enhaneestttivity of the compounds against JAK2 protein.

CONCLUSION
In the present study, several pharmacophore maaelstom-based 3D-QSAR models were generated wsargy
two training set and seven test set compounds.génerated pharmacophore model has provided a datiried

AAADR hypothesis with a highly predictive abilityf the JAK2 inhibitors. The developed 3D-QSAR motiak
provided the structural activity relationship oéthompounds by revealing the importance of eleawibhhdrawing
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and hydrophobic features on the chemical structfreompounds for the inhibition of JAK2 protein iadi.
Furthermore, it shows the effect of 4-[(4-methyhgigzin-1-yl)carbonyl] phenyl and trifluoromethylidine groups
on bicyclic ring moiety with respective JAK2 inhibiy potential of the compounds. Hence, the resulit®ined
from pharmacophore modeling and atom-based 3D-Q®ARel presents a theoretical picture in developiexyer
novel Janus-kinase 2 inhibitors as potential léadsug design.
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