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ABSTRACT 
 
Janus kinase 2 plays a critical role in JAK/STAT signaling pathways, and has a central role in cell cycle. JAK2 have 
emerged as a novel therapeutic target of myeloproliferative disorders, autoimmune diseases, essential 
thrombocytosis, and small molecular inhibition of JAK2 activity developed into an impressive drug target. For a 
series of JAK2 inhibitors pharmacophore model and atom-based 3D-QSAR models have been developed, to identify 
the essential structural features required for these JAK2 inhibitors using the PHASE module of Schrodinger. A five 
featured pharmacophore hypothesis with three hydrogen bond acceptors, one hydrogen bond donor and one 
aromatic ring provided a best atom-based 3D-QSAR model. The developed 3D-QSAR model have good statistical 
predictive values as R2 = 9659, Q2 = 0.5679 and effective Pearson R = 0.9405. The results illustrate the structural 
information of substituted aromatic bicyclic compounds containing pyrimidine and pyridine rings, which might be 
supportive for further rational design of novel potent Janus kinase 2 inhibitors. 
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INTRODUCTION 
 

Janus kinases, JAK1, JAK2, JAK3 and TYK2 are a family of nonreceptor tyrosine kinases, which plays a critical 
role in cytokine signaling, growth factor mediated signal transduction, cell proliferation and immune response 
pathways [1-4]. JAK family members consist of seven JAK homology (JH1-JH7) regions with a C-terminal catalytic 
domain and a N-terminal FERM domain [5, 6]. Remarkably, Janus kinase 2 has become a significant therapeutic 
target due to the discovery of single somatic mutation (JAK2 V617F) in pseudokinase (JH2) domain [7], and it's 
over expression induced constant active JAK/STAT signaling in most of the patents with myeloproliferative 
disorders [8-10], polycythemia vera (PV) [11], hematologic and solid malignancies [12-14], essential 
thrombocythemia (ET) [15] and autoimmune diseases [16], etc. These observations invoked various medicinal 
chemistry and clinical studies in an identification of potent JAK2 inhibitors. At present some of the small molecular 
inhibitors (namely, Ruxolitinib [17, 18], CYT-387 [19], Pacritinib [20], NS-018 [21], AZD1480 [22], NVP-BSK805 
& NVP-BVB808 [23], XL019 [24], CEP701 [25], LY2784544 [26], and others [27]) entered into clinical stage 
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against myelofibrosis (MF) and other disorders. Hence, development of novel small molecular inhibitors against 
Janus kinase 2 protein activities has gained importance. 
 
The in-silico molecular modeling studies provide hypothetical information on identification of specific structural 
features that required for small molecular inhibitors, which play vital roles in biological activity inhibition. The main 
objective of the present study is to develop pharmacophore models and atom-based 3D-QSAR models for a series of 
compounds and to determine the required essential structural features against Janus kinase 2 protein activities [28, 
29]. PHASE v3.1 [30], which is incorporated in maestro 9.0 (Schrödinger 2009) was used for pharmacophore model 
and 3D-QSAR model development studies. Due to the common structural frame work of the molecules, we 
developed atom-based 3D-QSAR models using a dataset of 22 training set and seven test set compounds. 

 
EXPERIMENTAL SECTION 

 
MODELLING METHODS 
Dataset 
A set of 29 known substituted aromatic bicyclic compounds containing pyrimidine and pyridine rings with JAK2 
inhibitory activity were selected for the present study based on a thorough literature survey [31]. The chemical 
structures of the molecules were drawn using MDL ISIS Draw (Table 1). IC50 values were converted into pIC50 as 
shown in Table 2. The total data set molecules were divided randomly into 75% of 22 training set and 25% of seven 
test set molecules. The randomized division of molecules was done over several runs in order to develop best 3D-
QSAR models. 
 

Table: 1 Chemical structure of the dataset molecules 

N

N

X
N N

N

O

R1

R2

R3

 
Comp. R1 X R2 R3 

1 4-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)phenyl C=O CH3 3-(trifluoromethyl)phenyl 
2 4-(4-methylpiperazin-1-yl)phenyl C=O CH3 3-(trifluoromethyl)phenyl 
3 4-(1-methylpiperidin-4-ylcarbamoyl)phenyl CH2 CH3 3-(trifluoromethyl)phenyl 
4 pyrimidin-5-yl CH2 CH3 3-(trifluoromethyl)phenyl 
5 4-(pyrrolidine-1-carbonyl)phenyl CH2 CH3 3-(trifluoromethyl)phenyl 
6 4-(2-(pyrrolidin-1-yl)ethoxy)phenyl CH2 CH3 5-(trifluoromethyl)thiophene-2-yl 
7 4-(2-(pyrrolidin-1-yl)ethoxy)phenyl CH2 CH3 piperidine-1-yl 
8 4-(2-(pyrrolidin-1-yl)ethoxy)phenyl CH2 CH3 3,3,3-trifluoro-prop-1-yl 
9 4-(4-methylpiperazin-1-yl)phenyl C=O Cl 3-(trifluoromethyl)phenyl 
10 4-(4-methylpiperazine-1-carbonyl)phenyl CH2 CH3 3,3,3-trifluoro-prop-1-yl 
11 4-(N-cyclopropylsulfamoyl)phenyl CH2 CH3 3-(trifluoromethyl)phenyl 
12 4-(4-methylpiperazin-1-yl)phenyl C=O CH3 4-(trifluoromethyl)pyridine-2-yl 
13 4-(4-methylpiperazine-1-carbonyl)phenyl CH2 CH3 4-(trifluoromethyl)pyridine-2-yl 
14 4-(4-methylpiperazine-1-carbonyl)phenyl C=O CH3 4-(trifluoromethyl)pyridine-2-yl 
15 4-(4-methylpiperazin-1-yl)phenyl C=O Cl 3-fluoro-5-(trifluoromethyl)phenyl 
16 4-(4-methylpiperazin-1-yl)phenyl CH2 Cl 3-(trifluoromethyl)phenyl 
17 4-(methylcarbamoyl)phenyl CH2 Cl 3-(trifluoromethyl)phenyl 
18 4-(methylcarbamoyl)phenyl CH2 Cl 3-fluoro-5-(trifl uoromethyl)phenyl 
19 4-(methylcarbamoyl)phenyl CH2 Cl 4-(trifluoromethyl)pyridine-2-yl 
20 4-(4-methylpiperazin-1-yl)phenyl C=O CH3 3-chloro-5-(trifluoromethyl)phenyl 
21 4-(4-methylpiperazine-1-carbonyl)phenyl CH2 CH3 3-(trifluoromethyl)phenyl 
22 4-(2-(pyrrolidin-1-yl)ethoxy)phenyl C=O CH3 3-(trifluoromethyl)phenyl 
23 3-((4-methylpiperazin-1-yl)methyl)phenyl CH2 CH3 3-(trifluoromethyl)phenyl 
24 4-(4-methylpiperazin-1-yl)phenyl C=O CH3 3-bromophenyl 
25 4-(2-(pyrrolidin-1-yl)ethoxy)phenyl CH2 CH3 cyclopentylamino 

26 
N

O

N

*

 
CH2 CH3 3-(trifluoromethyl)phenyl 

27 4-(2-(pyrrolidin-1-yl)ethoxy)phenyl CH2 CH3 
*

 

28 
NNN

O

*

 
CH2 CH3 3-(trifluoromethyl)phenyl 

29 
NO

N

*

 
CH2 CH3 3-(trifluoromethyl)phenyl 
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Ligand Preparation 
The chemical structure of the dataset molecules were drawn using ISIS Draw. The conversion of chemical structures 
from 2D to 3D, hydrogen addition and energy minimization of all molecules at OPLS-2005 force field was done by 
using LigPrep module [32]. For each molecule, a maximum of 2000 conformers were generated using Mixed 
MCMM/LMOD Search Method as implemented in MacroModel method [33] with an OPLS-2005 force field and 
distance-dependent dielectric solvent model. All the conformers developed were minimized using TNCG 
minimization up to 500 iterations. For each molecule, a set of minimized conformers with maximum relative energy 
difference of 10 kcal/mol was retained at RMSD of 1.00 Å. 
 
Pharmacophore & 3D-QSAR model generation 
Pharmacophore model was developed by Phase module, a default structure with six built-in pharmacophore features 
namely hydrogen bond acceptor (A), hydrogen bond donor (D), hydrophobic group (H), negatively charged group 
(N), positively charged group (P) and an aromatic ring (R) were applied for creation of pharmacophore sites. The 
pharmacophore features were interpreted using smarts queries as one of the three possible geometries - Point, Vector 
or Group representing the physical characteristics of the pharmacophore site. The confirmation of the activity 
thresholds defined five active compounds (pIC50 >= 8.200) and 11 inactive compounds (pIC50 <= 7.450), which are 
to be used for pharmacophore modeling and subsequent scoring. The common pharmacophores (CPHs) were 
identified using a tree-based partition algorithm with a maximum tree depth of five with an intersite distance of 2 Å. 
The final size of pharmacophore box which governs the tolerance on matching was 1 Å. The default scoring 
hypotheses parameters were applied for examination of the CPHs in order to yield the best alignment of the active 
ligands. 
 
Atom-based 3D-QSAR models were generated for the selected CPHs using a set of 22 training molecules with a 
grid spacing of 1.0 Å, random seed value of zero and six PLS factors. The developed 3D-QSAR models were 
validated by predicting activities of the seven test set molecules. 
 

Table: 2. 3D-QSAR predicted activity of training and test set compounds 
 

Comp. QSAR Set Experimental Activity Predicted Activity Pharm Set Fitness Score 

1 Training 7.215 7.18 Inactive 2.45 
2 Training 7.347 7.36 Inactive 2.46 
3 Training 8.155 8.15  2.76 
4 Training 7.721 7.64  2.62 
5 Test 7.854 7.84  2.63 
6 Test 7.745 7.91  2.64 
7 Training 7.398 7.43 Inactive 2.65 
8 Training 7.678 7.74  2.58 
9 Training 8.222 8.1 Active 2.47 
10 Training 7.337 7.38 Inactive 2.59 
11 Test 7.268 7.78 Inactive 2.52 
12 Training 7.319 7.56 Inactive 2.45 
13 Training 8.276 8.3 Active 3 
14 Training 7.155 7.08 Inactive 2.52 
15 Training 8.046 7.98  2.4 
16 Test 8.056 8.07  2.82 
17 Training 7.824 7.82  2.81 
18 Training 8 8  2.68 
19 Training 8.194 8.21  2.57 
20 Training 7.444 7.44 Inactive 2.38 
21 Training 8.523 8.57 Active 2.92 
22 Test 7.081 7.42 Inactive 2.37 
23 Training 7.553 7.54  2.6 
24 Test 7.356 7.69 Inactive 2.43 
25 Training 8.398 8.41 Active 2.69 
26 Training 7.495 7.49 Inactive 2.66 
27 Training 7.921 7.99  2.66 
28 Test 8.301 8.22 Active 2.8 
29 Training 8.097 7.95  2.77 
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RESULTS AND DISCUSSION 
 

Pharmacophore modeling and atom-based 3D-QSAR studies were performed on a series of specified organic 
molecules to determine the importance of specific structural features of JAK2 inhibitors required for the biological 
activity. The PHASE predicted activity and fitness values were shown in Table 2. 
 
Pharmacophore validation 
To generate the common pharmacophore hypothesis, the data set was divided into five active compounds (pIC50 >= 
8.200) and 11 inactive compounds (pIC50 <= 7.450) and the rest of the molecules as moderately active with four 
minimum sites and five maximum sites. We developed 85 five featured CPHs with different combination of 
variants. From these, five best CPHs namely, AAADR, AADDR, AADHR, ADDHR and ADDRR were chosen for 
3D-QSAR model development based on the scoring function and alignment of the active compounds. An atom 
based 3D-QSAR model was developed to the respective CPHs using twenty two training and seven test molecules 
with four PLS factors. A summary of quantitative structure-activity relationship (QSAR) results for the five best 
CPHs is shown in table 3. 
 

Table: 3. Statistical analysis of the selected 3D-QSAR model. 
 

 AAADR AADDR AADHR ADDHR ADDRR 
SD 0.0854 0.0808 0.0477 0.0747 0.0456 
R2 0.9659 0.9695 0.9894 0.9739 0.9903 
F 120.4 135 395 158.7 433.1 
P 3.12E-12 1.22E-12 1.60E-16 3.21E-13 7.39E-17 
RMSE 0.2715 0.3176 0.313 0.2726 0.3218 
Q2 0.5679 0.4085 0.4253 0.5643 0.3928 
Pearson R 0.9405 0.8964 0.6597 0.8422 0.7361 

SD, Standard deviation of the regression; R2, correlation coefficient; F, variance ratio; P, significance level of variance ratio; RMSE, root mean-
square error; Q2, predictive coefficient of the test set; Pearson R, Correlation between the predicted and observed activity for the test set. 

 

 
a).      b). 

  
c).      d). 

 
Figure: 1. The best AAADR hypothesis model; a. Alignment of the most active compounds; b. Alignment of the most active compound 13 

(highest fitness value = 3); c. Scatter alignment of the inactive compounds; d. Distances between different sites described in Å 
 

The generated five 3D-QSAR models were evaluated using different statistical parameters (R2, Q2, SD, RMSE, 
Pearson R and F) to find the best 3D-QSAR model. The hypothesis AAADR, has shown good R2 value of 0.9659 
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for the training set and a predictive potential with Q2 value of 0.5679, low RMSE value of 0.2715 and highest 
Pearson R value of 0.9405. Thus, AAADR hypothesis with three hydrogen bond acceptors (A), one hydrogen bond 
donor (D) and one aromatic ring (R) as pharmacophoric features was selected as the best CPH model. The best 
hypothesis (AAADR) of the 3D-QSAR model generation is shown in Figure 1. The scatter plot for the predicted and 
experimental activity of training and test set compounds is shown in Figure 2. 

 

 
 

Figure 2. Correlation between predicted (pIC50) and phase activity (pIC50) of training and test set compounds 
 

QSAR Visualization 
The generated counter cubes describe the essential features that play a vital role in interactions between ligand and 
the active domain of the JAK2 protein. A visual representation of the contours generated for the most active 
compound 13 and the least active compound 22 is shown in Figure 3 and 4 respectively. In this illustration, blue 
cubes indicate favourable regions and red cubes indicate unfavourable regions of substituent groups increasing the 
activity. The cubes generated for different properties such as electron withdrawing, hydrophobic, hydrogen bond 
donor and combined effect of the most active compound 13 and the least active compound 22 with AAADR 
hypothesis is shown in Figure 3a-d, Figure 4a-d respectively. 
 

  
a).        b). 

 
c). 

Figure 3. Atom-based 3D-QSAR model visualization of the most active compound 13 with AAADR hypothesis; a. electron withdrawing 
feature; b. hydrophobic features and c. combined effect 
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a).       b). 

 
c). 

Figure 4. Atom-based 3D-QSAR model visualization of the least active compound 22 with AAADR hypothesis a. electron withdrawing 
feature; b. hydrophobic features and c. combined effect 

 
The contour cubes generated for electron withdrawing features of most active compound 13 (Fig. 3a) reveals the 
importance of 4-methylpiperazin-1-yl on inhibition of JAK2 activity. The presence of blue cubes at A2 and A3 
shows the favorable regions of electron withdrawing features and the substitution of electron withdrawing features at 
these positions (A2, A3 & 4-methylpiperazin-1-yl group) are acceptable and enhance the activity of the compounds. 
The addition of electron withdrawing features at pyridine moiety and A5 may not enhance the inhibitory activity of 
the compounds due to the presence of red cubes, which indicate the unfavorable regions. Fig. 3b, the presence of 
blue cubes at 4-[(4-methylpiperazin-1-yl)carbonyl] phenyl group attached to the bicyclic ring and 
trifluoromethylpyridine group attached to carboxamide group represent the favourable regions of hydrophobic 
features of the compounds. Fig. 3c. illustrates the combined effect of all features of the most active compound, 
which represents the presence of blue cubes at 4-[(4-methylpiperazin-1-yl)carbonyl]phenyl and 
trifluoromethylpyridine groups as the favourable regions of the compound. 
 
Likewise, contour cubes generated for electron withdrawing features (Fig. 4a), hydrophobic features (Fig. 4b) and 
combined features (Fig. 4b) of the least active compound 22 indicate the presence of blue cubes as the favourable 
regions and also the addition of suitable electron withdrawing groups and hydrophobic groups, respectively, at this 
positions may enhance the activity of the compound. The red cubes indicate the unfavourable regions of the 
compound. On comparison of the contour cubes generated for electron withdrawing features and hydrophobic 
features of the most active 13 and least active 22 compounds, it evidently shows that the presence of 4-[(4-
methylpiperazin-1-yl)carbonyl] phenyl and trifluoromethylpyridine groups on bicyclic ring moiety enhance the 
JAK2 inhibitory activity of the compounds. Due to the lack of above specified groups, compound 22 became less 
active. Thus, it is recommended that the addition of suitable electron withdrawing groups and hydrophobic groups at 
the favourable regions (blue cubes) will enhance the activity of the compounds against JAK2 protein. 
 

CONCLUSION 
 

In the present study, several pharmacophore models and atom-based 3D-QSAR models were generated using twenty 
two training set and seven test set compounds. The generated pharmacophore model has provided a five featured 
AAADR hypothesis with a highly predictive ability of the JAK2 inhibitors. The developed 3D-QSAR model has 
provided the structural activity relationship of the compounds by revealing the importance of electron withdrawing 
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and hydrophobic features on the chemical structure of compounds for the inhibition of JAK2 protein activity. 
Furthermore, it shows the effect of 4-[(4-methylpiperazin-1-yl)carbonyl] phenyl and trifluoromethylpyridine groups 
on bicyclic ring moiety with respective JAK2 inhibitory potential of the compounds. Hence, the results obtained 
from pharmacophore modeling and atom-based 3D-QSAR model presents a theoretical picture in developing newer 
novel Janus-kinase 2 inhibitors as potential leads in drug design. 
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