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ABSTRACT 
 
Numerical solutions are obtained for the 2D confined plane viscoelastic flow around a confined cylinder. The 
Navier-Stokes momentum differential fluids, whilst for the viscoelastic case different constitutive equations are 
utilised.Finite element scheme is implemented to represent the convective terms in the constitutive equations for the 
Phan-Thien-Tanner fluids, and the resulting predictions of the drag coefficient on the cylinder are shown to be as 
accurate as existing numerical predictions. In this context, a Taylor-Galerkin/pressure correction finite element 
method has been adopted for the parabolic-elliptic momentum-continuity equations, whilst a finite volume 
implementation is utilised for the hyperbolic sub-system comprising of the constitutive equation.. 
 
Keywords: Social impact, economic analysis, solid oxide fuel cell, clean energy 
_____________________________________________________________________________________________ 

 
INTRODUCTION 

 
The numerical simulation of viscoelastic flows with free-surfaces is a relevant problem to the modelling of several 
shaping processes in the polymer industry, such as extrusion or injection moulding. Polymer melts are typical 
examples of viscoelastic materials. Any dissolved elastic component, be it polymers or biological molecules, will 
give rise to viscoelastic effects. Such effects require the use of models that take the fluid’s memory of past 
deformations into account. Differential constitutive equations are able to do just this, and they provide a good 
quantitative agreement with experiments Baaijens et al. (1997). As a result, the constitutive behaviour of the 
material depends on its strain history [1]. 
 
This was effectively solved, when loss of positive definiteness for the conformation tensor was recognized as the 
cause of the singularity and the log-conformation method was introduced as a remedy Hulsen et al. (2005). 
 
Many complex fluids of interest exhibit a combination of viscous and elastic behavior under strain. Examples of 
such fluids are polymer solutions and melts, oil, toothpaste, and clay, among many others. The Oldroyd-B fluid 
presents one of the simplest constitutive models capable of describing the viscoelastic behavior of dilute polymeric 
solutions under general flow conditions. Despite the apparent simplicity of the constitutive relation, the dynamics 
that arise in many flows are complicated enough to present a considerable challenge to numerical simulations. 
 
In shear flows, the viscoelasticity produces a normal stress difference τxx – τyy. A typical example of a viscoelastic 
effect happening in the manufacturing industry is the extrudate swelling. Another viscoelastic effect is the elastic 
turbulence in curvilinear flows, at very low Reynolds number Re (below unity) [2-4]. Recently, Morozov and 



M. Y. Abdollahzadeh Jamalabadi and M. Oveisi                          J. Chem. Pharm. Res., 2016, 8(1):712-728 
______________________________________________________________________________ 

713 

Saarloos [5] summarized theoretical and experimental evidences of the existence of a subcritical elastic instability 
due to normal stress effects, in planar flows. Linear and non-linear stability analysis [6] showed that the viscoelastic 
Poiseuille flow is linearly stable at all Weissenberg numbers, but becomes nonlinearly unstable at a Weissenberg 
number around 4, where the Weissenberg number Wi is the dimensionless quantity accounting for the anisotropy 
created by the normal stress difference: 
 

( ) ,xx xx xyWi τ τ τ= −
 

 
The numerical simulation of viscoelastic flows has for a long time been very challenging, because of the so-called 
high Weissenberg number problem [7]. Numerical investigations show that the simulations are prone to numerical 
instability (divergence of the calculation) for Wi above the unity. Another numerical difficulty comes from the 
resolution of the Navier-Stokes equations at low Re, where classical fractional-step methods lose their efficiency. In 
this paper, we present a numerical framework which avoids these two difficulties with two changes of variables: the 
logarithmic-conformation representation [8,9], and the pure-streamfunction flow formulation [10,11], as described 
in the section 3. Both reformulations enhance the robustness of the simulation. 
 

 
 

Figure 1. Schematic diagram of flow around a cylinder in a channel 
 
When it comes to the modelling of free-surfaces, Lagrangian methods have the advantage to solve directly the 
position of the surface (coinciding with the position of mesh), without additional calculations, see for instance 
[12,13]. However, Lagrangian methods become difficult to use when the free-surfaces experience changes of 
topology, e.g. when surfaces split or merge. For this reason, Eulerian methods are more suitable in general cases. 
Thus, free-surface problems are typically solved as bi-phasic flows, where one is of the fluid phase is simply air. In 
the Eulerian methods, the position of the interface between the two phases is represented through the use of an 
additional discrete variable. We chose to use the volume-of-fluid (VOF) method [14-16], where the additional 
variable is the volume fraction of the two phases, which is transported with the flow. 
 
The goal of this research is to model the flow of an elastic polymer and find a correlation between the first normal 
stress difference and the pressure drop. The normal stress difference is very difficult to measure in practice, but very 
important in determining the viscoelastic properties of the fluid. However, pressure is very easy to measure, and if a 
correlation between the two can be determined, the pressure drop could then be used to determine these viscoelastic 
properties, more specifically: elasticity and Weissenberg number. The same type of phenomenon was already 
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observed for non-Newtonian viscoelastic fluids although in this case as a consequence of more complex and less 
understood effects. Fellouah et al. [17] numerically and experimentally studied Dean instabilities using power-law 
and Bingham fluids in a curved duct of rectangular cross-section. Independently, Iemoto et al. [18] and Das [19] 
verified that the secondary flow of a purely viscous fluid (following a power law [18] and a Bingham [19] model) is 
weaker than that of a viscoelastic fluid (considering a White–Metzner model), in a curved pipe. From a similarity 
solution for an Oldroyd-B fluid flowing in the region between two circular concentric cylinders of large radius, with 
radial injection of fluid at the outer cylinder wall, Phan-Thien and Zheng [20] found that the flow kinematics was 
very close to that for a Newtonian fluid under the same conditions. In this problem, secondary flows were absent. 
More relevant to the present work, in a series of studies of flows in annular spaces with rectangular cross-section, 
Joo and Shaqfeh [21], [22] and [23] reported a purely elastic flow instability, which had not been studied before and 
was found to be stationary in pressure driven Dean flow of an Oldroyd-B fluid. In addition, they showed that this so-
called purely elastic Dean flow is destabilized by inertia. For the same fluid model, Sarin [24] studied the effects of 
Deborah number on the position of the maximum axial velocity and of the centre of vortices, and verified an 
increase in the magnitude of secondary flows, in curved pipe. The effects of rotation about z-axis (normal to the 
flow direction axis) on secondary flow intensity, axial velocity and axial normal stress were investigated by Zahng 
et al. [25] for an Oldroyd-B fluid flow in a curved duct of square cross-section. They concluded that all the 
parameters they focused in are affected by rotation, generating multiple pairs of vortices. Recently, Norouzi et al. 
[26] focused on the effects of centrifugal force due to the curvature of the rectangular cross-section duct and the 
opposite effects of the first and second normal stress differences on the flow field, considering a second-order fluid. 
Their numerical results showed that while the first normal stress difference favours the transition from one to two 
pairs of vortices, the second normal stress difference has the opposite effect. Also considering a second-order fluid, 
but flowing in a curved pipe, Sharma and Prakash [27] established that the first normal stress difference intensifies 
the secondary flow. Also for a curved pipe, Fan et al. [28] subsequently confirmed the finding for the Oldroyd-3-
constant fluid model (which includes the Upper–Convective–Maxwell and Oldroyd-B models) and showed that the 
negative second normal stress difference has the opposite effect, i.e., it decreases the intensity of the secondary flow. 
Helin et al. [29] presented results on the development of the flow in a curved duct with square cross-section 
considering two viscoelastic fluids, namely the Oldroyd-B model and a modified version of the Phan–Thien–Tanner 
(PTT) model. For the former, the magnitude and intensity of the secondary vortices increase with elasticity, and for 
the later the onset of the second pair of vortices in the secondary flow takes place at lower Reynolds numbers as 
Deborah number increases. The later result was also numerically verified by Boutabaa et al. [30], considering the 
same geometry [31-38]. 
 
Of the two types of sudden contraction flow geometries, the one that has received more attention, both numerically 
and experimentally, is the axisymmetric configuration. The planar configuration, on the other hand, is better suited 
to visualisation studies through birefringence strand techniques, as in the works [39], [40] and [41], and is equally 
relevant to engineering flows in extrusion dies. In a previous papers [42-45], we have reviewed the published 
numerical work on planar contraction flows and have provided numerical solutions based on the upwind scheme but 
using very refined meshes. Later [46], we published accurate results for the case of the flow of an upper convected 
Maxwell (UCM) fluid, giving special attention to issues of accuracy and mesh refinement, particularly to the effects 
brought about by improved numerical spatial discretisations in contrast to plain upwind differencing. Amongst the 
more recent computational work we emphasise that of Aboubacar and Webster [47] and Aboubacar et al. [48] who 
have done a very comprehensive study of Oldroyd-B and PTT fluids flowing through sharp and rounded-corner 
planar contractions, having highlighted the influence of the fluids Trouton ratio on the vortex patterns. Although the 
conclusions of these authors regarding flow behaviour in planar contractions are indisputably correct, as we shall 
show their data still lack the degree of accuracy required for benchmark data and that is the gap we would like to 
fulfil with this work. 
 

EXPERIMENTAL SECTION 
 

The governing equations of the viscoelastic flows consist in the continuity equation ( 0. =∇ uρ conservation of 
mass) 

0,∇ ⋅ =u  

and the momentum equation ( ( )[ ] ).().( FuupIuu T +∇+∇+−∇=∇ µρ conservation of linear momentum) 



M. Y. Abdollahzadeh Jamalabadi and M. Oveisi                          J. Chem. Pharm. Res., 2016, 8(1):712-728 
______________________________________________________________________________ 

715 

2
S ,p

t
ρ µ∂ + ⋅∇ = −∇ + ∇ + ∇ ⋅ ∂ 

u
u u u σ  

where u is the velocity vector, p is the isostatic pressure and σ the viscoelastic extra-stress tensor. The left hand side 
in the equation corresponds to the inertial effects; the three terms on the right hand side of equation are the 
contributions of the pressure gradient, the Newtonian viscous stress of the solvent, and the viscoelastic stress of the 
polymers, respectively. Finally, the equations of conservation are supplemented with a constitutive model which 
closes the system of equations [49]. We use a generic partial-differential viscoelastic model of general form 

 

( )T P2( )
,

t
f µ

λ λ

∂ + ⋅∇
∂

− ⋅∇ + ∇ ⋅ + = &

σ
u σ

σ
σ u u σ σ ε

 

 

where f (σ) is a relaxation function, and 
T( ) 2= ∇ + ∇ε u u&

 is the strain rate tensor. Depending on the expression of 
f (σ), popular viscoelastic models can be recovered [1], see table 1. The material parameters ρ, µS, µP and λ are the 
density, the solvent viscosity, the polymer viscosity and the relaxation time, respectively. Table 1 defines the terms 
mentioned above [51-63]. 
 
ε is Elasticity of the fluid, parameter in PTT model; ∆P/L Predicted drop in pressure for fully developed flow per 
unit length using the Phan-Thien-Tanner (PTT) model; ∆Pexcess1isThe difference of the measured drop in pressure 
through the model and thedrop in pressure that occurs when We = 0; ∆Pexcess2 is the difference of the measured 
drop in pressure through the model and the fully developed pressure drop in PTT; τxx Shear stress at the inlet, also 
the normal stress at the inlet. We: is Weissenberg Number: λ<u>/y; Where λ is the time constant that describes how 
fast the polymer “forgets” its shape, <u> is the average velocity, and y is half the height of the model. 

 
In a porous medium  
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Table 1. Expressions of the relaxation function f (σ) in 

the generic constitutive equation (4), for different 
viscoelastic models 

  
Viscoelastic 
model 

Relaxation function ( )f σ  

Oldroyd-B 1 
Giesekus ( )11 αλ µ+ σ  

Linear PTT ( ) ( )11 trελ µ+ σ  

Exponential PTT ( ) ( )1exp trελ µ  σ  

FENE-CR ( ) ( )
1

2
11 trLλ µ

−
 + σ  
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In dimensionless forms: 
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while for this research, we non-dimensionalized every quantity; that with our boundary conditions (described in the 
next section) give us the following relations: 
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is comparable to 
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To use the correlations above, the term,∆P must be calculated at the given ε and We. 
 
The first normal stress difference, N, is calculated as N = τxx - τyy, but these stresses are measured at the inlet 
where τyy = 0, so N = τxx. 
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and from symmetry ( 00 =xp ) at BC 
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For a 3D problem this model studies a flow of Oldroyd-B fluid past a cylinder between two parallel plates. The flow 
is considered as being two-dimensional (2D). The aspect ratio of the cylinder radius to the channel half-width is 1/2. 
To avoid the entrance and exit effects, the computational domain is 40 times longer than the channel half-width. The 
fluid is a dilute solution of polymer in a Newtonian liquid solvent of viscosity ηs. The total stress is presented as:  
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where u = (u, v) is the flow velocity vector, p is the pressure In code 

So we should change sµµρ ≡≡ Re,
to solve 

( )[ ] ).().Re( TuupIuu T
s +∇+∇+−∇=∇ µ

  
 
Also the general form PDE for the solution of 
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The extra stress contribution due to the polymer is given by the following Oldroyd-B constitutive relation:  

)(2 ue
t

T
T pηλ =

∆
∆+

  
 
where the upper convective derivative operator (or Oldroyd derivative) is defined as 

( ) ( )[ ]TuTTuTu
t

T

t

T ∇+∇−∇+
∂
∂=

∆
∆

).(
  

 
The polymer is characterized by two physical parameters: The viscosity ηp and the relaxation time λ. The fluid is 
treated as incompressible with a constant density ρ; the flow equations read:  
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 The extra stress tensor is symmetric:  









=

22121
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Therefore, it is necessary to solve three additional equations, for the three components in Equation 3, together with 
three equations given by Equation 5 for the pressure and two velocity components. 

 
The Weissenberg number is defined as:  

R

U
Wi inλ=

   
 

where Uin is the average fluid velocity at the inlet, R is the radius of the cylinder, and λ is the polymer relaxation 
time. (An alternative name, which is often used for this nondimensional parameter, is the Deborah number.) A zero 
Weissenberg number gives a pure viscous fluid (no elasticity) while an infinite Weissenberg number limit 
corresponds to purely elastic response. Due to the convective nature of the constitutive relation, the solution stability 
is lost with the increasing fluid elasticity. In practice, already the values Wi > 1 are considered as a high 
Weissenberg number for many flows of an Oldroyd-B fluid. By adding least squares-type stabilization terms to the 
Galerkin finite element formulation, you can improve stability and obtain solutions over a larger range of 
Weissenberg numbers compared to standard Galerkin formulations. The present model makes use of such least-
squares stabilization technique. The flow is stationary, and the problem becomes dimensionless by using R, Uin, and 
the total viscosity η = ηs + ηp. The nondimensional equations system is the following: 

 

( )[ ] ).().Re( TuupIuu T
s +∇+∇+−∇=∇ µ
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( )( . ) ( ) ( )
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where the Reynolds number is Re = R Uinη / ρ, and the relative viscosities of the solvent and polymer are, 
respectively: µs = ηs / η and  

s
p

p µ
η

η
µ −== 1

   
Weak formulation of the above equations and the stabilization terms needed for the extra stress equations are not 
shown here. For details, see Ref. 1. 

 
Because of the flow symmetry, you model only the upper halves of the channel the cylinder. At the channel 
centerline, use the symmetry conditions of zero normal flow and zero total tangential stress:  
 

( ) 0..

0.

=
=

tn
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σ   
 
where n and t are the boundary unit normal and tangent vectors, respectively. On a horizontal line of symmetry, the 
latter condition is reduced to  
 

02 1212 =+ Tesµ
  

 
At the channel walls and the cylinder surface, the model uses no slip conditions for the velocity together with the 
condition for the normal component of the extra stress: 
 

( ) 0.. =nnT   
 
Polymers are unable to exert a normal force on the wall because no polymer can span the wall boundary. Half-Inlet 
Here you specify the developed parabolic velocity profile and the corresponding extra stresses components:  
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where the geometry edge parameter s varies from 0 to 1 along the half-inlet boundary. Outlet At the outlet, use the 
pressure boundary condition for developed flow; the only stress acting at the boundary is due to the pressure force 
pout:  

npn out−=.σ
  

 
The continuum problem is discretized with the finite-volume method, where the governing equations translate to 
balances of the fluxes between discrete control volumes. The fluxes are evaluated by a quadratic upwind 
interpolation scheme with flux limiters (CUBISTA) introduced [15]. The equations are integrated in time with the 
two-level backward differentiation formula (BDF2). Our implementation of the VOF method uses the second-order 
accurate algorithm of Pilliod and Puckett [16], where the piecewise linear approximations of the interface are 
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reconstructed with the ELVIRA technique, and the advection is solved explicitly by an operator split algorithm. 
Because of the non-linearity, the volume fraction, constitutive and conservation equations are solved sequentially, 
with successive direct substitution iterations until a convergence criterion is reached, at each time-step. 

 
The log-conformation reformulation of the constitutive equation was recently introduced by Fattal and Kupferman 
[8,9]. It expresses the viscoelastic extra-stress σ in the constitutive equation (4) in terms of the logarithmic 
conformation s = log(c). The conformation tensor, defined as 

 

P( ) ,λ µ= +c σ I  
 
is a measure of the extra-stress which has the important property of being symmetric positive definite, thus it has a 
real matrix-logarithm. The matrix-logarithm transformation requires the diagonalization of the conformation tensor, 

T ,=c QDQ  where D is the diagonal matrix of the eigenvalues and Q is the orthogonal matrix containing the 
eigenvector as vector column. The matrix-logarithm is interpreted as 

 

( ) ( ) Tlog log ,=c Q D Q
 

 
where the logarithm log(D) is applied component-wise. The evolution equation of the log-conformation is: 

( ) ( )
2 ,

f e
e

t λ
−∂ + ⋅∇ − − − =

∂

s
ss

u s Ωs sΩ B
 

 

where the Ω and B are pure rotation and pure extension decompositions of the velocity gradient ∇u . Finally, the 
divergence of the viscoelastic extra-stress is recovered though the matrix-exponential of s. This change of variable 
ensures by construction the positive definiteness of the conformation tensor. Fattal and Kupferman also showed that 
the numerical instabilities at high Weissenberg numbers are due to poor resolution of the exponential stress growth 
in time, and the exponential stress profile near geometrical singularities [17], with quadratic approximations. In the 
log-conformation representation, such exponential growths/profiles become linear and are accurately approximated 
by linear and quadratic schemes. 

 
The main difficulty when solving the conservation equations (2)-(3) with the velocity and pressure as primary 
unknowns (u-p formulation), comes from the fact that there is no evolution equation for the pressure unknowns. 
Indeed, the pressure acts as a Lagrange multiplier of the incompressibility constraint which means that errors in the 
pressure fields directly link to errors in the conservation of mass. Most (if not all) viscoelastic algorithms use 
velocity-pressure fractional-step decoupling techniques, such as the SIMPLE, PISO or Chorin’s projection methods 
[18-20]. The decoupling is achieved via an approximation of the inverse of the Jacobian matrix in the system of 
momentum equations. This approximation introduces a decoupling error; e.g. for the standard first order fractional-

step method, the dominant error terms are proportional to t Re∆ [21]. It means the decoupling technique is accurate 
at high Re, i.e. in flows driven by gravity or inertia, such as in aero-dynamics or hydro-dynamics problems. 
However, at low Re (especially below unity), the decoupling errors becomes very large. These flows are generally 
driven by pressure gradients, so that the velocity and pressure fields are strongly coupled. As a result, the decoupling 
techniques may not be the most suitable. 

 
Alternatives to the u-p formulation solve the momentum equation in its rotational form, where a transport equation 

for the vorticity = ∇ ×ω u  is derived [22], e.g. the u-ω formulation and the ψ-ω formulation. As a result, the 
pressure unknowns are eliminated from the system of equations. Here we use a more robust formulation, the pure-
streamfunction formulation, recently introduced by Kupferman [10] and by Chang, Giraldo and Perot [11], 
independently. It also uses the rotational form of the momentum equation, but all the kinematic unknowns are 
expressed in terms of a streamfunction ψ, defined as a vector potential of the velocity field: 
 

,= ∇ ×u ψ  
 
and linked to the vorticity by a Poisson equation: 
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.= ∆ω ψ  
 
The advantage of the pure-streamfunction formulation is that the continuity constraint is automatically fulfilled, by 

construction. In the 2D case, only one component of ψ  is non-zero: ( )0,0, ,ψ=ψ
 therefore the streamfunction 

vector reduces to a scalar field φ, where 
 

( ), , .u v
y x

ψ ψψ⊥  ∂ ∂= ∇ = − ∂ ∂           (1) 
 
Then, the evolution equation for the streamfunction scalar reads: 

( ) ( )2S ,
t

µψ ψ ψ ψ
ρ

⊥∂  ∆ + ∇ ⋅∇ ∆ = ∆ + ∇ × ∇ ⋅ ∂
σ

       (2) 
 
In general, this formulation is more robust and accurate as it is fully implicit and does not produce errors. For details 
about the discretization procedure of the 4th order operators, see in reference [11]. 
 

 
 

 
Figure 2. Mesh regions 

 
RESULTS AND DISCUSSION 

 
For the exponential form of the PTT fluid, the results of our calculations for ε=0.25 are depicted in Fig. 3-7, giving 
XR versus De; in Fig. 8-12, giving ΨR versus De; and in Fig. 13-15, versus De; the corresponding numerical data. 
Again, fair agreement is seen with computations by Aboubacar et al. [8], except at De=0.1 for the reasons noted 
above. However, except for two values of the recirculation intensity at De=100 and 1000, the uncertainty is 
generally below 1%. In these runs, it was important to use an extended length for the downstream channel as De was 
increased, according to the estimate given by Eq. (11); otherwise, the discrepancy between results on meshes M2 
and M4 would be visible in the figures. M4 was deemed adequate for this fluid case; runs at De=1 and 100 on 
meshes M4 and M6 showed a difference in XR below 0.1 and 0.5% for ΨR. 
 
Current solution method for 2D viscoelastic flow was implemented in Matlab. We first test our algorithm for the 
simulation of Newtonian and viscoelastic flows at very low Re in the 4:1 contraction geometry, without free-
surfaces. The geometry is discretised using a uniform orthogonal mesh, with 40 control volumes on the width of the 
downstream channel. The no-slip boundary condition is applied at the walls, and the fully-developed velocity and 
stress profiles are imposed at the inlet. We use an Oldroyd-B material with a viscosity ratio β = µS / (µS + µP) = 1/9. 
The fluid is initially at rest, and after a short transient response the flow establishes a steady-state solution. In our 
calculation, the steady-state solution was found stable for Wi < 4, while a hydrodynamic instability developed from 
Wi = 4 and above. This instability is not a numerical instability since the simulation does not diverge. The 
streamlines are perturbed inside the downstream channel. Oscillations of the velocity in the spanwise direction 
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partially separate the stress boundary-layers from the walls, as depicted in the figure 1. The flow perturbation was 
initiated near to the re-entrant corner and later propagated inside downstream. It is interesting to note that the 
perturbation started where the streamlines have high curvatures and the material experiences the largest shear 
deformation. This is an indication that this flow instability could correspond to a (physical) elastic instability [5]. 
 
The analysis gradually increases the Weissenberg number from 0 to 1 using the parametric solver. Figure 1 and 
Figure 2 show the flow field and stress distribution for a typical value of Wi = 0.7. Figure 3 shows the drag 
coefficient as a function of the Weissenberg number. The result is in good agreement with the experimental and 
simulation results presented in Ref. 2. In order to validate the code, we compare our results with the experimental 
data of Bara et al. [6] in Fig. 3, where velocity profiles extracted from the middle plane of the duct (Z = 0.5) at 
different positions along the curve are presented. The solid lines represent our results and the symbols pertain to the 
data of Bara et al. [6] for three values of the Reynolds numbers (Re = 486, 532 and 583). Good agreement was 
obtained for all cases thus validating the numerical method and confirming again the adequateness of the mesh 
resolution. 
 

 

 
 

Figure 3. Flow field near cylinder and stress distribution for Wi = 0.7 
 

 
 

Figure 4. Stress distribution along the cylinder surface and wake centerline for Wi = 0.7 
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Figure 5. Drag on the cylinder 

 
In Fig. 7 the streamlines for the Oldroyd-B fluid, computed on the finest mesh M6, are presented. These show, 
qualitatively, shrinkage of the corner vortex with raising elasticity and the appearance of a small lip vortex at around 
De≈1. Although minute, the lip vortex is not an artifact of the computations: it is shown in Fig. 8 that its intensity is 
finite with extrapolation to a zero mesh size (recall that our mesh is very refined in the region around the re-entrant 
corner). From Fig. 8 it is also clear that, while for De=0.5 and 1 the lip vortex vanishes when the grid resolution is 
infinitely increased, for De=1.5 a finite lip vortex intensity remains when ∆x→0. Such behaviour is more clearly 
shown in Fig. 9, where lip vortex streamlines are plotted over an enlarged local view of the various meshes, and in 
Fig. 6 where the asymptotic variation of lip vortex size and intensity with mesh fineness indicates finite values for 
zero mesh size. Note the linear convergence of the lip vortex characteristics, in contrast to the general quadratic 
convergence rate of the scheme; this is the best it can be achieved with such a small and localised flow feature as the 
lip vortex. Similar, but stronger, lip vortices were present in our previous simulations with the upper convected 
Maxwell model [6] and [12]. 

 

 
Figure 6. Profiles of longitudinal normal stress  along cylinder wall and wake centreline for UCM fluid at increasing De 
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Figure 7. Asymptotic behaviour of the normal stress with the azimuthal position for increased elasticity 

 

 
 

Figure 8. Zoomed view of the streamlines for a Newtonian fluid (dashed line) and an Oldroyd-B fluid at De= 0.9 
 

 
Figure 9. Streamlines and velocity magnitude for  PTT fluid at De= 1 

 
A view of the various stress component fields (τxx, τyy, τxy) and the pressure field in the entrance region is 
provided in Fig. 10. These predictions were obtained on the finest mesh M6 and correspond to the highest Deborah 
number achieved, De=2.5. All fields are smooth, with highly localised stress concentration at the walls adjacent to 
the re-entrant corner. A more quantitative view of the local velocity and stress variations can be gained from 
asymptotic type of plots, which also serve to check some of the existing theories. These kinds of plots show radial 
profiles under log–log scales, emanating from re-entrant corner (distance r), at given angles θ measured 
anticlockwise from the incoming flow direction (see Fig. 2). The most convenient angle is θ=90° which corresponds 
to profiles across the flow, along the Cartesian co-ordinate y, at x=0; Fig. 11 shows such profiles on various meshes 
for the Oldroyd-B fluid at De=1. This value of De was chosen to avoid the formation of a lip vortex which would 
violate the assumptions of the asymptotic theories (e.g. [19]). The predictions shown in Fig. 11 reveal good 
convergence when the computational meshes are refined, with the longitudinal and transversal velocity components 
going to zero near the corner as r5/9 and r3/4, respectively, and all three stress components going to infinity as r−2/3; 
these slopes agree with the theory of Hinch [19]. Further study of the asymptotic behaviour of the UCM fluid (which 
essentially follows the Oldroyd-B behaviour) was given in a previous work [20], where both the Deborah number 
and the angle of the radial line were varied. 
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Figure 10. Vertical velocity contour for PTT fluid at De= 1 

 
Figure 11. Horizontal velocity for PTT fluid at De= 1 

 
Figure 12. Pressure contour for PTT fluid at De= 1 

 
This model is shear thinning on both the shear viscosity and the first normal stress difference coefficient. In 
addition, the elongational viscosity is limited; reaching a plateau at high strain rates, and the maximum value of the 
elongational viscosity varies inversely with the parameter ε. The first set of results to be presented corresponds to 
ε=0.25, a typical value for the flow of concentrated polymer solutions and/or also for polymer melt flows. Contrary 
to the Oldroyd-B fluid, both the size and intensity of the corner vortex for the linear PTT fluid are seen in Fig. 13 
and Fig. 14 to increase monotonically with the Deborah number. Also, there is less sensitivity to mesh fineness, 
except possibly at high De, but not as noticeable as for the Oldroyd-B fluid. For purposes of benchmarking, all our 
results are tabulated in Table 3 with quantified uncertainties. For comparison, the data of Aboubacar et al. [8] are 
plotted in these figures; there is fair agreement, except for some erratic points. Notice also that the vortex 
recirculation tends to level out at high elasticity and so the linear PTT model is not able to predict the very large 
corner vortices observed in some experimental visualisation works (see [21] and references therein). 
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Figure 13. T11 for PTT fluid at De= 1 

 
Figure 14. T12 for PTT fluid at De= 1 

 
Figure 15. T22 for PTT fluid at De= 1 

 
CONCLUSION 

 
Accurate predictions for the flow around a confined cylinder (blockage ratio 0.5) are obtained with a general 
collocated FVM incorporating two high-resolution schemes to represent the convective terms in the constitutive 
equation. A consistent mesh refinement study and the application of Richardson’s extrapolation to the solution 
functional Cd allowed us to determine the apparent (or observed) order of convergence of the schemes. These 
estimates are valid De< 0.9 in which we achieve the asymptotic range for the four finer meshes. The present Cd 
results can be used as benchmark data with an estimated accuracy in the finer mesh of 0.03% for the UCM and 
0.01% for the Oldroyd-B fluids (except for the last available De, for which we obtain 0.07% for UCM at De D 0:9, 
and 0.03% for Oldroyd-B at De D 1). For this problem, which is usually classified under the category of “smooth 
flow”, we have consistent predictions of Cd up to De < 0.7 between the present FVM and the FEM of Fan et al. [9] 
who used an highly accurate h-p refinement technique with polynomials of degree up to 6. Other FEM and CVFEM 
results from the literature start deviating from the present Cd data, and th �at of [9], at De  0:3 (UCM) and De <0.4 
(Oldroyd-B), typically exhibiting higher Cd values, an indication of loss of accuracy. It is thus, established that 
FVM can yield accurate results, provided the discretisation of the constitutive equation and the level of mesh 
refinement are adequate, in line with opinions vehiculated by Dou and Phan-Thien [11] and Baaijens [36] regarding 
the need to use higher-order schemes in FVM. In fact, if anything the present decoupled FVM proved to be more 
robust than the coupled FEM of [9] with solutions for the UCM model up to De <1:0 using MINMOD. However, 
findings of Fan et al. [9] related to difficulties to attain mesh converged results in the wake of the cylinder at high 
Deborah numbers are confirmed. In a wake-refined mesh, the maximum normal stresses in the wake are seen to 
increase as De3 and as De5 for low and high Deborah numbers, respectively. 
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