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ABSTRACT

Numerical solutions are obtained for the 2D confined plane viscoelastic flow around a confined cylinder. The
Navier-Sokes momentum differential fluids, whilst for the viscodastic case different constitutive equations are
utilised.Finite element scheme is implemented to represent the convective terms in the constitutive equations for the
Phan-Thien-Tanner fluids, and the resulting predictions of the drag coefficient on the cylinder are shown to be as
accurate as existing numerical predictions. In this context, a Taylor-Galerkin/pressure correction finite element
method has been adopted for the parabolic-dliptic momentum-continuity equations, whilst a finite volume
implementation is utilised for the hyperbolic sub-system comprising of the constitutive equation..
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INTRODUCTION

The numerical simulation of viscoelastic flows witee-surfaces is a relevant problem to the moupkif several
shaping processes in the polymer industry, suckx&sision or injection moulding. Polymer melts aypical
examples of viscoelastic materials. Any dissolvidtec component, be it polymers or biological nooles, will
give rise to viscoelastic effects. Such effectsunexjthe use of models that take the fluid’s memofypast
deformations into account. Differential constitatiequations are able to do just this, and theyigeoa good
guantitative agreement with experiments Baaijenslef(1997). As a result, the constitutive behaviof the
material depends on its strain history [1].

This was effectively solved, when loss of positdefiniteness for the conformation tensor was rezaghas the
cause of the singularity and the log-conformatiathind was introduced as a remedy Hulsen et al 5(200

Many complex fluids of interest exhibit a combimettiof viscous and elastic behavior under strairangples of
such fluids are polymer solutions and melts, @bthpaste, and clay, among many others. The OldBofidid
presents one of the simplest constitutive modgbsloie of describing the viscoelastic behavior dfitdi polymeric
solutions under general flow conditions. Despite dpparent simplicity of the constitutive relatidine dynamics
that arise in many flows are complicated enougbrésent a considerable challenge to numerical sitiouls.

In shear flows, the viscoelasticity produces a rairstress differencgy —zy,. A typical example of a viscoelastic

effect happening in the manufacturing industryhis eéxtrudate swelling. Another viscoelastic effect is tlebastic
turbulence in curvilinear flows, at very low Reynolds numbie (below unity) [2-4]. Recently, Morozov and
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Saarloos [5] summarized theoretical and experini@vidences of the existence obuabcritical elastic instability

due to normal stress effects, in planar flows. im@nd non-linear stability analysis [6] showed tha viscoelastic
Poiseuille flow is linearly stable at all Weisserdp@aumbers, but becomes nonlinearly unstable at&s¥nberg
number around 4, where the Weissenberg nuibas the dimensionless quantity accounting for this@tropy
created by the normal stress difference:

Wi =(r,, -7,)/T,.

The numerical simulation of viscoelastic flows Hiasa long time been very challenging, becauséefso-called
high Weissenberg number problem [7]. Numerical investigations show that the sintiglas are prone taumerical
instability (divergence of the calculation) f&¥i above the unity. Another numerical difficulty cosnfom the
resolution of the Navier-Stokes equations at Reywhere classical fractional-step methods lose #féiciency. In
this paper, we present a numerical framework whiatids these two difficulties with two changes afiables: the
logarithmic-conformation representation [8,9], and thepure-streamfunction flow formulation [10,11], as described
in the section 3. Both reformulations enhance teistness of the simulation.
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Figure 1. Schematic diagram of flow around a cylinder in a channel

When it comes to the modelling of free-surfacesgraagian methods have the advantage to solve kyirtt
position of the surface (coinciding with the pasitiof mesh), without additional calculations, see ifistance
[12,13]. However, Lagrangian methods become diffita use when the free-surfaces experience chanfes
topology, e.g. when surfaces split or merge. F&r thason, Eulerian methods are more suitable mergé cases.
Thus, free-surface problems are typically solvebigshasic flows, where one is of the fluid phassimply air. In
the Eulerian methods, the position of the interfaeénveen the two phases is represented throughigheof an
additional discrete variable. We chose to useutlame-of-fluid (VOF) method [14-16], where the additional
variable is the volume fraction of the two phasesich is transported with the flow.

The goal of this research is to model the flow ofetastic polymer and find a correlation between fitst normal
stress difference and the pressure drop. The nastres difference is very difficult to measurgractice, but very
important in determining the viscoelastic propexti the fluid. However, pressure is very easy &asure, and if a
correlation between the two can be determinedptassure drop could then be used to determine theseelastic
properties, more specifically: elasticity and Weisserg number. The same type of phenomenon waadglre
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observed for non-Newtonian viscoelastic fluids ailthh in this case as a consequence of more corapléxess
understood effects. Fellouah et al. [17] numenjcalid experimentally studied Dean instabilitiesagspower-law
and Bingham fluids in a curved duct of rectangualarss-section. Independently, lemoto et al. [18] &as [19]

verified that the secondary flow of a purely vissdluid (following a power law [18] and a Binghait9] model) is
weaker than that of a viscoelastic fluid (considgra White—Metzner model), in a curved pipe. Frosinailarity

solution for an Oldroyd-B fluid flowing in the remi between two circular concentric cylinders ofjaradius, with
radial injection of fluid at the outer cylinder waPhan-Thien and Zheng [20] found that the flowenatics was
very close to that for a Newtonian fluid under #ane conditions. In this problem, secondary flovesenabsent.
More relevant to the present work, in a seriestodies of flows in annular spaces with rectangatass-section,
Joo and Shaqgfeh [21], [22] and [23] reported a lguwetastic flow instability, which had not been dted before and
was found to be stationary in pressure driven DOkanof an Oldroyd-B fluid. In addition, they shod¢hat this so-
called purely elastic Dean flow is destabilizeditgrtia. For the same fluid model, Sarin [24] sadlthe effects of
Deborah number on the position of the maximum ax&lbcity and of the centre of vortices, and vedfian

increase in the magnitude of secondary flows, irved pipe. The effects of rotation about z-axisr(mal to the
flow direction axis) on secondary flow intensityjal velocity and axial normal stress were investiigl by Zahng
et al. [25] for an Oldroyd-B fluid flow in a curveduct of square cross-section. They concluded #flathe

parameters they focused in are affected by rotatienerating multiple pairs of vortices. RecenMgprouzi et al.

[26] focused on the effects of centrifugal forceedo the curvature of the rectangular cross-sedliset and the
opposite effects of the first and second normaisstidifferences on the flow field, considering eosel-order fluid.
Their numerical results showed that while the firestmal stress difference favours the transiti@mfrone to two
pairs of vortices, the second normal stress diffeeenas the opposite effect. Also considering arsgorder fluid,

but flowing in a curved pipe, Sharma and Prakash ¢&tablished that the first normal stress diffeeeintensifies
the secondary flow. Also for a curved pipe, Famle{28] subsequently confirmed the finding for @&lroyd-3-

constant fluid model (which includes the Upper—Gastive—Maxwell and Oldroyd-B models) and showed the

negative second normal stress difference has thesiie effect, i.e., it decreases the intensitthefsecondary flow.
Helin et al. [29] presented results on the develapimof the flow in a curved duct with square cresstion

considering two viscoelastic fluids, namely the ©@idl-B model and a modified version of the Phanemkiranner
(PTT) model. For the former, the magnitude andnsity of the secondary vortices increase with eagt and for

the later the onset of the second pair of vorticethe secondary flow takes place at lower Reynoldsbers as
Deborah number increases. The later result wasraleterically verified by Boutabaa et al. [30], colesing the

same geometry [31-38].

Of the two types of sudden contraction flow geoiestrthe one that has received more attention, batherically
and experimentally, is the axisymmetric configuratiThe planar configuration, on the other handbeiter suited
to visualisation studies through birefringencersdréechniques, as in the works [39], [40] and [4t]d is equally
relevant to engineering flows in extrusion dies.almprevious papers [42-45], we have reviewed thighed

numerical work on planar contraction flows and hpk@vided numerical solutions based on the upwaime but
using very refined meshes. Later [46], we publisaecurate results for the case of the flow of apenpronvected
Maxwell (UCM) fluid, giving special attention tosges of accuracy and mesh refinement, particutarie effects
brought about by improved numerical spatial dissegtons in contrast to plain upwind differencidgnongst the
more recent computational work we emphasise thatoiubacar and Webster [47] and Aboubacar et 8l ho

have done a very comprehensive study of Oldroydi® RTT fluids flowing through sharp and roundedresr
planar contractions, having highlighted the infloemf the fluids Trouton ratio on the vortex patterAlthough the
conclusions of these authors regarding flow behavio planar contractions are indisputably correstwe shall
show their data still lack the degree of accuraguired for benchmark data and that is the gap aa@dvike to

fulfil with this work.

EXPERIMENTAL SECTION

The governing equations of the viscoelastic flowssist in the continuity equatior!op'u = 0conservation of
mass)

=0,

ul)u=0.(-pl +4{0u+(0u)" |+ F)

and the momentum equatior?g conservation of linear momentum)
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p(% +u D]]uj =-0Op+ u0%u+ 008,

where u is the velocity vector, p is the isostptiessure and the viscoelastic extra-stress tensor. The leftitsde

in the equation corresponds to the inertial effette three terms on the right hand side of egnatice the
contributions of the pressure gradient, the Nevetioniiscous stress of the solvent, and the visctelsisess of the
polymers, respectively. Finally, the equations ofgervation are supplemented with a constitutivelehavhich

closes the system of equations [49]. We use a fepartial-differential viscoelastic model of geakform

~(o mu + 0w B)+Ma =2
F F

. — T
where f 6) is a relaxation function, anti™ (Qu+Du )/2 is the strain rate tensor. Depending on the egpRof
f (o), popular viscoelastic models can be recoveredsdd table 1. The material paramepensS, uP andi are the
density, the solvent viscosity, the polymer visgpand the relaxation time, respectively. Tableefirtes the terms
mentioned above [51-63].

¢ is Elasticity of the fluid, parameter in PTT mod&P/L Predicted drop in pressure for fully develofiedv per

unit length using the Phan-Thien-Tanner (PTT) moaBkexcesgsThe difference of the measured drop in pressure
through the model and thedrop in pressure thatreoshen We = 0APexcess? is the difference of the measured
drop in pressure through the model and the fullyettped pressure drop in PTixx Shear stress at the inlet, also
the normal stress at the inlet. We: is Weissenbengber:A<u>/y; Whereh is the time constant that describes how
fast the polymer “forgets” its shape, <u> is therage velocity, and y is half the height of the elod

In a porous medium

D A

p, —au —bu
where
U _ PG
a== |, b=
k Jk

Table 1. Expressionsof therelaxation function f (s) in
the generic constitutive equation (4), for different
viscoelastic models

Viscoelastic Relaxation functionf (&)
model

Oldroyd-B 1

Giesekus 1+ (0’/1/,[11)0'

Linear PTT 1+ (g/]//,[l) tr(a)
Exponential PTT eXF{(‘gA/ljl) '[I’(O'):|

FENE-CR |:1+ (A/MLZ) tr(o'):|_l
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In dimensionless forms:

. O, =1—\/1—E(2—£)r*2

* n/2A é
and
Z.* - pxy
n/2A
whe limo, =1
-0
g,to, -¢
So f =1+&——— inLinear PTT andg, =0, . In a same way :
2 2-¢
- f =1+ 1_5 50-*

X

Which has a solution of

:y:—l T*+££’T*3
T A= 2-¢

Uy

or

2.3
u:%y2+—£/:73pX y*+u

max

while for this research, we non-dimensionalizedrgwgiantity; that with our boundary conditions (delsed in the
next section) give us the following relations:

u=Poyzileyy
n n

2
%(pr“ +4pZT, Y 3+ 6p, 1Y *+ 4TW3Y)
Y

w

is comparable to

P
=X -h
u 2,uy(y )

To use the correlations above, the tésfhmust be calculated at the giveand We.

The first normal stress difference, N, is calcudats N =txx - tyy, but these stresses are measured at the inlet
wheretyy = 0, so N =txx.

from continuity
3 2
V,=-u, o v=-Pa[Y YN o)
2u\ 3 2
With BC of
c - Vv(0)=0
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and from symmetry px| 0=0)atBC

PN’ -6,
V(h) =V, = E - p= e X* + P, for half length

- x ) 3(LY
&:({_j DfmzﬁAp;aX:_(_j
WV /h h 2\ h
with the velocity of
U gXY(Y 4
A hhih
and

3 2
i:zl - X
V., h h
As ¢ - 0 we have

= Pely ) Py )

For a 3D problem this model studies a flow of Olard fluid past a cylinder between two paralleltpia The flow
is considered as being two-dimensional (2D). Theeeisratio of the cylinder radius to the channdl-hédth is 1/2.
To avoid the entrance and exit effects, the contjfmurtal domain is 40 times longer than the chana#fhidth. The
fluid is a dilute solution of polymer in a Newtonifiquid solvent of viscosityjs. The total stress is presented as:

o, z-xy _ -P 0
T, 0,| |0 -p

+2 ex exy +_T>< Txy
Hs e e

Xy y Xy y

o, T, T, -p 0 O
r, o, 1,|={0 -p O
e T, O, | O 0 -p
ex exy exz Tx Txy sz
+2u e, e, e, |+T, T, T,
e, €, € T, T, T,

where u = (u, v) is the flow velocity vector, ptih® pressure In code

So we should chang’g =Re, u= 'uSto solve
ReQ)u = O.(-pl + g, |Ou +(0u)"|+T)

Also the general form PDE for the solution of
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o|T, TXy B

A T

Wi (O +[ @u)T +T @u) )
+44, [ (D) +(Qu)" |

Where is for each component

ul= ui +vi
ox oy

The extra stress contribution due to the polymeiven by the following Oldroyd-B constitutive réfan:

AT
T+A—= u
A 2oV

where the upper convective derivative operatoQoiroyd derivative) is defined as
AT 0T [ T]

— =—+uD)T -|(OuT+T(Ou

At ot b ( ( )

The polymer is characterized by two physical patanse The viscosityjp and the relaxation timg The fluid is
treated as incompressible with a constant depsitiye flow equations read:

,u
ot
Ho=0

+ p(u.D)u =0o

The extra stress tensor is symmetric:
T — {Tll T12:|
T121 T22
Therefore, it is necessary to solve three additieqaations, for the three components in Equatioto@ether with
three equations given by Equation 5 for the presand two velocity components.

The Weissenberg number is defined as:

V\A:/]%

where Uin is the average fluid velocity at the inR is the radius of the cylinder, aihds the polymer relaxation
time. (An alternative name, which is often usedtfas nondimensional parameter, is the Deborah muni zero
Weissenberg number gives a pure viscous fluid (lastieity) while an infinite Weissenberg number iim
corresponds to purely elastic response. Due tadhgective nature of the constitutive relation, sloéution stability
is lost with the increasing fluid elasticity. In gmtice, already the values Wi > 1 are considered dsgh
Weissenberg number for many flows of an OldroydtBdf By adding least squares-type stabilizatiomteto the
Galerkin finite element formulation, you can impeowstability and obtain solutions over a larger earaf
Weissenberg numbers compared to standard Galevkinufations. The present model makes use of suadt-le
squares stabilization technique. The flow is stetiy, and the problem becomes dimensionless by i&itJin, and
the total viscosity; =ns +np. The nondimensional equations system is theviatig:

ReuD)u=0.(-pl + ,uS[Du + (DU)TJ+T)
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T +Wi (uO)T -[(Qu)T +T @uy' )
= f, [ (Qu) +(Ou)" |

where the Reynolds number is Re = R Wihp, and the relative viscosities of the solvent amdymer are,
respectivelyus =ns /n and

Weak formulation of the above equations and thbilstation terms needed for the extra stress eqoatare not
shown here. For details, see Ref. 1.

Because of the flow symmetry, you model only thearphalves of the channel the cylinder. At the clehn
centerline, use the symmetry conditions of zeranabflow and zero total tangential stress:

un=0

(on)t=0

wheren andt are the boundary unit normal and tangent vectespectively. On a horizontal line of symmetry, the
latter condition is reduced to

2ue,+T,=0

At the channel walls and the cylinder surface, ni@el uses no slip conditions for the velocity tbge with the
condition for the normal component of the extrastr

(Tnln=0

Polymers are unable to exert a normal force owtlle because no polymer can span the wall boundHalf-Inlet
Here you specify the developed parabolic velocityfie and the corresponding extra stresses compsne

3
u=—(1-¢?
2( )

ou ’
Tll = 2,U V\ﬂ(a—yJ

ou
T, =4, (a_yj

T,,=0

where the geometry edge parametearies from 0 to 1 along the half-inlet boundaDytlet At the outlet, use the
pressure boundary condition for developed flow; ahéy stress acting at the boundary is due to tessure force

pout:
on=-p,n

The continuum problem is discretized with the #ritolume method, where the governing equationsskage to
balances of the fluxes between discrete controumelk. The fluxes are evaluated byqaadratic upwind
interpolation scheme with flux limiters (CUBISTA) introduced [[13he equations are integrated in time with the
two-level backward differentiation formula (BDF2). Our implementation of the VOF method udes second-order
accurate algorithm of Pilliod and Puckett [16], whehe piecewise linear approximations of the fal are
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reconstructed with the ELVIRA technique, and theemtion is solved explicitly by an operator splig@ithm.
Because of the non-linearity, the volume fractioonstitutive and conservation equations are sobesflientially,
with successiveirect substitution iterations until a convergence criterion is reaklat each time-step.

The log-conformation reformulation of the constitatequation was recently introduced by Fattal Kngferman
[8,9]. It expresses the viscoelastic extra-stresg the constitutive equation (4) in terms of tlegdrithmic
conformations = log(c). The conformation tensor, defined as

c=(A/tp)o+1,

is a measure of the extra-stress which has therbantoproperty of beingymmetric positive definite, thus it has a
real matrix-logarithm. The matrix-logarithm transfwation requires the diagonalization of the confation tensor,

_ T
c=QbQ, whereD is the diagonal matrix of the eigenvalues &ds the orthogonal matrix containing the
eigenvector as vector column. The matrix-logariibrimterpreted as

log(c) =Qlog(D)Q,

where the logarithm lo) is applied component-wise. The evolution equatibthe log-conformation is:

§+ums—(gs—sg)—28 = 1) g,
ot A

where the andB are pure rotation and pure extension decompositifrihe velocity gradienpu . Finally, the
divergence of the viscoelastic extra-stress isvexma though the matrix-exponential ©fThis change of variable
ensures by construction the positive definitendgsheconformation tensor. Fattal and Kupfermao alsowed that
the numerical instabilities at high Weissenberg bera are due to poor resolution of the exponestiaks growth
in time, and the exponential stress profile neangetrical singularities [17], with quadratic appirations. In the
log-conformation representation, such exponentiaghs/profiles become linear and are accuratepr@pmated
by linear and quadratic schemes.

The main difficulty when solving the conservatioquations (2)-(3) with the velocity and pressurepasnary
unknowns (-p formulation), comes from the fact that there isawolution equation for the pressure unknowns.
Indeed, the pressure acts as a Lagrange multgfiigre incompressibility constraint which meangt thaors in the
pressure fields directly link to errors in the cention of mass. Most (if not all) viscoelastigalithms use
velocity-pressure fractional-step decoupling teghes, such as the SIMPLE, PISO or Chorin’s prajactnethods
[18-20]. The decoupling is achieved via an appr@tion of the inverse of the Jacobian matrix in siystem of
momentum equations. This approximation introducds@upling error; e.g. for the standard first orfdlactional-

step method, the dominant error terms are propuatitm At/ Re [21]. It means the decoupling technique is accurate
at highRe, i.e. in flows driven by gravity or inertia, suas in aero-dynamics or hydro-dynamics problems.
However, at lowRe (especially below unity), the decoupling erroredraes very large. These flows are generally
driven by pressure gradients, so that the velagity pressure fields are strongly coupled. As dtre¢be decoupling
techniques may not be the most suitable.

Alternatives to thai-p formulation solve the momentum equation in itatimnal form, where a transport equation

for the vorticity @ = XU is derived [22], e.g. the-@ formulation and they-w formulation. As a result, the
pressure unknowns are eliminated from the systesgoétions. Here we use a more robust formulatiepure-
streamfunction formulation, recently introduced by Kupferman [10] and by Ghagiraldo and Perot [11],
independently. It also uses the rotational formttef momentum equation, but all the kinematic unkmewre
expressed in terms of a streamfunctygrdefined as a vector potential of the velocitydie

u=0xy,

and linked to the vorticity by a Poisson equation:
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o =Ay.

The advantage of the pure-streamfunction formutaitiothat the continuity constraint is automatigdilifilled, by

construction. In the 2D case, only one componen'(’oifs non-zero:¥ =(0,0,t//) " therefore the streamfunction

vector reduces to a scalar fieddwhere

(uv) = 0% =[-a_‘” "_””J

dy ' ox 1)

Then, the evolution equation for the streamfunctoalar reads:
9 ny +[(0%)m Ay =55 Ny +Ox(0),
o p @

In general, this formulation is more robust anduaate as it is fully implicit and does not produgeors. For details
about the discretization procedure of tHeofder operators, see in reference [11].

M60 (WR)

Figure 2. Mesh regions

RESULTSAND DISCUSSION

For the exponential form of the PTT fluid, the léswf our calculations fo#=0.25 are depicted in Fig. 3-7, giving
XR versus De; in Fig. 8-12, givingR versus De; and in Fig. 13-15, versus De; theesponding numerical data.
Again, fair agreement is seen with computationsAbgubacar et al. [8], except at De=0.1 for the o@asnoted
above. However, except for two values of the redaton intensity at De=100 and 1000, the uncetyais
generally below 1%. In these runs, it was importantse an extended length for the downstream @tamDe was
increased, according to the estimate given by Eb); (otherwise, the discrepancy between resultmeshes M2
and M4 would be visible in the figures. M4 was dednadequate for this fluid case; runs at De=1 &l dn
meshes M4 and M6 showed a difference in XR beldwadd 0.5% fol’R.

Current solution method for 2D viscoelastic flowsaienplemented in Matlab. We first test our algaritifor the
simulation of Newtonian and viscoelastic flows a&ry low Re in the 4:1 contraction geometry, without free-
surfaces. The geometry is discretised using a tmifarthogonal mesh, with 40 control volumes onwidth of the
downstream channel. The no-slip boundary condiigoapplied at the walls, and the fully-developetbeiy and
stress profiles are imposed at the inlet. We us@ldrmyd-B material with a viscosity rat= us / (us + up) = 1/9.
The fluid is initially at rest, and after a shardnisient response the flow establishes a steaty-stdution. In our
calculation, the steady-state solution was fouatllstforwi < 4, while a hydrodynamic instability developedrfr
Wi = 4 and above. This instability is not a numerigatability since the simulation does not divergde
streamlines are perturbed inside the downstreamnataOscillations of the velocity in the spanwidieection
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partially separate the stress boundary-layers fiterwalls, as depicted in the figure 1. The flowtpebation was
initiated near to the re-entrant corner and lat@pagated inside downstream. It is interesting ate rthat the
perturbation started where the streamlines havé higvatures and the material experiences the darggear
deformation. This is an indication that this flomsfability could correspond to a (physical) elast&tability [5].

The analysis gradually increases the Weissenbemgoaufrom 0 to 1 using the parametric solver. Féglirand
Figure 2 show the flow field and stress distribatifor a typical value of Wi = 0.7. Figure 3 showe tdrag
coefficient as a function of the Weissenberg numibée result is in good agreement with the expenteldeand
simulation results presented in Ref. 2. In ordevadbdate the code, we compare our results withetkgerimental
data of Bara et al. [6] in Fig. 3, where velocitypfiles extracted from the middle plane of the d(®t= 0.5) at
different positions along the curve are preserniée. solid lines represent our results and the sysrertain to the
data of Bara et al. [6] for three values of the iagls numbers (Re = 486, 532 and 583). Good agneemas
obtained for all cases thus validating the numénmeathod and confirming again the adequatenessi®fitesh

resolution.

T
\\
-

/ | s 1
i \ ’/
10| / / . i
\/ —
[ . -/ . L
3

o 1 2 4 5 6 7 8

Figure 4. Stressdistribution along the cylinder surface and wake centerlinefor Wi =0.7
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Figure5. Drag on the cylinder

In Fig. 7 the streamlines for the Oldroyd-B fluchmputed on the finest mesh M6, are presented.eThlesw,
qualitatively, shrinkage of the corner vortex wittising elasticity and the appearance of a snyaNdirtex at around
Dex1. Although minute, the lip vortex is not an artifaf the computations: it is shown in Fig. 8 thatintensity is
finite with extrapolation to a zero mesh size (tetteat our mesh is very refined in the region arduhe re-entrant
corner). From Fig. 8 it is also clear that, white De=0.5 and 1 the lip vortex vanishes when the iggsolution is
infinitely increased, for De=1.5 a finite lip vorténtensity remains whenx—0. Such behaviour is more clearly
shown in Fig. 9, where lip vortex streamlines diatpd over an enlarged local view of the variousshes, and in
Fig. 6 where the asymptotic variation of lip vortsixe and intensity with mesh fineness indicateidivalues for
zero mesh size. Note the linear convergence ofipheortex characteristics, in contrast to the gahguadratic
convergence rate of the scheme; this is the beahibe achieved with such a small and localised feature as the
lip vortex. Similar, but stronger, lip vortices weepresent in our previous simulations with the upgmvected
Maxwell model [6] and [12].
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Figure 6. Profiles of longitudinal normal stress along cylinder wall and wake centrelinefor UCM fluid at increasing De
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Figure 7. Asymptotic behaviour of the normal stresswith the azimuthal position for increased elasticity

Figure 9. Streamlinesand velocity magnitudefor PTT fluid at De= 1

A view of the various stress component fieldsx( tyy, txy) and the pressure field in the entrance reg®n i
provided in Fig. 10. These predictions were obtdioe the finest mesh M6 and correspond to the kigbeborah
number achieved, De=2.5. All fields are smoothhvhitghly localised stress concentration at the svatljacent to
the re-entrant corner. A more quantitative viewtlod local velocity and stress variations can benagifrom
asymptotic type of plots, which also serve to cheake of the existing theories. These kinds ofspsbtow radial
profiles under log—log scales, emanating from reaen corner (distance r), at given anglésmeasured
anticlockwise from the incoming flow direction (sEig. 2). The most convenient angléd#90° which corresponds
to profiles across the flow, along the Cartesiatoinate y, at x=0; Fig. 11 shows such profilesrarious meshes
for the Oldroyd-B fluid at De=1. This value of Deagsvchosen to avoid the formation of a lip vortexolhwvould
violate the assumptions of the asymptotic theofeeg. [19]). The predictions shown in Fig. 11 rdvgaod
convergence when the computational meshes areedefinith the longitudinal and transversal velocitynponents
going to zero near the corner &5 and P, respectively, and all three stress componentsggt infinity as >
these slopes agree with the theory of Hinch [18itHer study of the asymptotic behaviour of the U@dd (which
essentially follows the Oldroyd-B behaviour) wasegi in a previous work [20], where both the Debanaimber
and the angle of the radial line were varied.
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2

Figure 10. Vertical velocity contour for PTT fluid at De= 1

" T —

Figure 11. Horizontal velocity for PTT fluid at De= 1

Figure 12. Pressure contour for PTT fluid at De= 1

This model is shear thinning on both the shearogitg and the first normal stress difference cagffit. In

addition, the elongational viscosity is limitedaching a plateau at high strain rates, and themaxi value of the
elongational viscosity varies inversely with thegraeters. The first set of results to be presented cormedpdo

£=0.25, a typical value for the flow of concentrafEdymer solutions and/or also for polymer meltfto Contrary
to the Oldroyd-B fluid, both the size and intensifythe corner vortex for the linear PTT fluid aeen in Fig. 13
and Fig. 14 to increase monotonically with the Drabonumber. Also, there is less sensitivity to mésbaness,
except possibly at high De, but not as noticeabléoathe Oldroyd-B fluid. For purposes of benchkirag, all our

results are tabulated in Table 3 with quantifiedartainties. For comparison, the data of Aboubatal. [8] are
plotted in these figures; there is fair agreemenxept for some erratic points. Notice also that tortex

recirculation tends to level out at high elastictyd so the linear PTT model is not able to pretiietvery large
corner vortices observed in some experimental lisatéon works (see [21] and references therein).
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Figure13. Ty for PTT fluid at De= 1

_

Figure14. Ty, for PTT fluid at De= 1

Figure15. Ty, for PTT fluid at De= 1

CONCLUSION

Accurate predictions for the flow around a confinedinder (blockage ratio 0.5) are obtained witlgeneral
collocated FVM incorporating two high-resolutionhstmes to represent the convective terms in thetitoinge
equation. A consistent mesh refinement study aedatpplication of Richardson’s extrapolation to gwdution
functional Cd allowed us to determine the appafentobserved) order of convergence of the scheresse
estimates are valid De< 0.9 in which we achieveasygmptotic range for the four finer meshes. Thesent Cd
results can be used as benchmark data with anasetinraccuracy in the finer mesh of 0.03% for theMJ&hd
0.01% for the Oldroyd-B fluids (except for the lasfilable De, for which we obtain 0.07% for UCMCa D 0:9,
and 0.03% for Oldroyd-B at De D 1). For this prablenhich is usually classified under the categdrysonooth
flow”, we have consistent predictions of Cd up te ©£0.7 between the present FVM and the FEM ofdtaal. [9]
who used an highly accurate h-p refinement tectenigith polynomials of degree up to 6. Other FEM &\¢FEM
results from the literature start deviating frore firesent Cd data, anchttof [9], at Del 0:3 (UCM) and De <0.4
(Oldroyd-B), typically exhibiting higher Cd valuean indication of loss of accuracy. It is thus,abtished that
FVM can yield accurate results, provided the dissagion of the constitutive equation and the legélmesh
refinement are adequate, in line with opinions gekited by Dou and Phan-Thien [11] and Baaijen$ f&@arding
the need to use higher-order schemes in FVM. If fhanything the present decoupled FVM provedémore
robust than the coupled FEM of [9] with solutioms the UCM model up to De <1:0 using MINMOD. Howeyve
findings of Fan et al. [9] related to difficultiés attain mesh converged results in the wake ottiaeder at high
Deborah numbers are confirmed. In a wake-refinedhmthe maximum normal stresses in the wake ane teee
increase as De3 and as De5 for low and high Debmsatbers, respectively.
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