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ABSTRACT 
 
Removal of Head Movement Artifacts in EEG comes under the Domain of Bio-Medical Engineering. In 
Electroencephalogram (EEG), the measurements are based on the Human Brain Activities, so the output should be 
very accurate. But, Because of the Artifacts present in the EEG signal the Accuracy of the signal is reduced. So, 
improvements are needed to obtain the accurate output. Different types of artifacts occur during the EEG recording 
such as Head Movement Artifacts, Eye Blink Artifacts, Respiration Artifacts, Muscle Movement Artifacts, and 
Improper Electrode Placement Artifacts and Environmental factors. This Paper is about the removal of Head 
Movement Artifacts. It can be implemented by using the Independent Component Analysis (ICA) Method, which 
separates the multivariate components into subcomponents. EEG signal is a multivariate component signal which 
consists of Pure EEG signal associated with Artifacts. It can be recorded by using EEG Electrodes connected to the 
PC with the Necessary Amplification section. Accelerometer is used to measure the Head movement in the tri-axis. 
Head Movement signals are recorded separately using the Accelerometer and correlated with the EEG signal by 
passing the both signal to the ICA. The signals which are correlated with each other are considered as Artifacts and 
flagged for the removal.  
 
Keywords: Brain–Computer Interface (BCI), Mind-Machine Interface (MMI),Brain–Machine Interface (BMI), 
Independent Component Analysis(ICA) 
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INTRODUCTION 

 
A brain–computer interface (BCI), often called a mind-machine interface (MMI), or sometimes called a direct neural 
interface or a brain–machine interface (BMI), is a direct communication pathway between the brain and an external 
device. The interface enables a communication between the brain and the object to be controlled.A Brain-Computer 
Interface (BCI) is a specific type of human-computer interface that enables the direct communication between 
human and computers by analysing brain measurements.For example, the signal is transmitted directly from the 
brain to the mechanism directing the cursor, rather than taking the normal route through the body's neuromuscular 
system from the brain to the finger on a mouse. By reading signals from an array of neurons in brain and using 
computer chips and programs to translate the signals into action, BCI can enable a person suffering from paralysis to 
write a book or control a motorized wheelchair or prosthetic limb through thought alone. Current brain-interface 
devices require deliberate conscious thought; some future applications, such as prosthetic control, are likely to work 
effortlessly. One of the biggest challenges in developing BCI technology has been the development of electrode 
devices and/or surgical methods that are minimally invasive. In the traditional BCI model, the brain accepts an 
implanted mechanical device and controls the device as a natural part of its representation of the body. Much current 
research is focused on the potential on non-invasive BCI. 
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Brain-Computer Interface (BCI) can help people with neuromuscular diseases (e.g. amyotrophic lateral sclera-sis 
(ALS), brainstem stroke, etc.) communicate. Being one of the popular approaches, event-related potential (ERP) 
based BCIs exploit the fact that brain potential can be modulated by human attention. For example, user attention to 
a rare event in an oddball paradigm can enhance the P300 component of ERP time-locked to this event. This would 
make the computer to under the actions of the Brain. Then, user intention (attend or not) can be detected by 
decoding the modulated potential. Although significant progress has been made in researching brain–computer 
interface technologies in recent years, the applications controlled by these interfaces have largely been designed for 
training or demonstration purposes. The Georgia State University (GSU) Brain Lab is devoted to researching and 
developing interaction techniques that will allow BCIs to be effective in real-world applications. Hence, the BCI  
applications will be developed because of the GSU Brain lab around the world.  
 
Brain–computer interfaces (BCIs) are devices that translate brain signals into operational commands for technical 
devices. While multiple methods have been developed to extract and classify the electrical activity of the brain, the 
application of BCIs to the target group, for example, patients with severe physical impairment and brain damage, 
has rarely been considered. The electroencephalogram (EEG) is modified by motor imagery and can be used by 
patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their 
environment. Such a direct connection between the brain and the computer is known as an EEG-based brain–
computer interface (BCI).It involves the reading of EEG signal from the Human Brain to the computer with the use 
of EEG electrodes with appropriate Amplifiers. The idea of Brain-Computer Interfaces (BCIs) which allow the 
control of devices using brain signals evolved from the realm of science fiction to simple devices that currently 
exist. BCIs naturally present themselves to many extremely useful applications including prosthetic devices, 
restoring or aiding in communication and hearing, military applications, video gaming and virtual reality, and 
robotic control, and have the possibility of significantly improving the quality of life of many disabled individuals. 
 
The ultimate goal of BCI research is to create a system that not only an “open loop” system that responds to users 
thoughts but a “closed loop” system that also gives feedback to the user. Researchers initially focused on the motor-
cortex of the brain, the area which controls muscle movements, and testing on animals quickly showed that the 
natural learning behaviors of the brain could easily adapt to new stimuli as well as control the firing of specific areas 
of the brain. Though the idea of using EEG waves as input to BCIs has existed since the initial conception of BCIs, 
actual working BCIs based on EEG input have only recently appeared. Most EEG-BCI systems follow the paradigm 
of reading in and analyzing EEG data, translating that data into device output, and giving some sort of feedback to 
the user. The primary difficulty in creating an EEG-based BCI is the feature extraction and classification of EEG 
data that must be done in real-time if it is to have any use. Feature extraction deals with separating useful EEG data 
from noise and simplifying that data so that classification, the problem of trying to decide what the extracted data 
represents, can occur. There is no best way of extracting features from EEG data and modern BCIs often use several 
types of feature extraction including Horthy parameters (a way of describing the normalized slope of the 
data),wavelet transforms, Fourier transforms, and various other types of filters.  
 
The P300 component of an event related potential is widely used in conjunction with brain–computer interfaces 
(BCIs) to translate the subject’s intent by mere thoughts into commands to control artificial devices [1]. In addition, 
they propose an online method that optimizes information transfer rates and/or accuracies. This is achieved by an 
algorithm which dynamically limits the number of sub trial presentations, according to the subject’s current online 
performance in real-time. In the first, study peak information transfer rates up to 92 bits/min with an accuracy of 
100% were achieved by one subject with a mean of 32 bits/min at about 80% accuracy.  
 
A relevant issue is conveyed in a brain–computer interface (BCI) which is the capability to efficiently convert user 
intentions into correct actions, and how to properly measure this efficiency [2]. Usually, the evaluation of a BCI 
system is approached through the quantification of the classifier performance, which is often measured by means of 
the information transfer rate (ITR).They proposed a novel metric based on the computation of BCI Utility. The new 
metric can accurately predict the overall performance of a BCI system, as it takes into account both the classifier and 
the control interface characteristics. The Frequency coding has been the traditional method implemented in steady-
state visual evoked potential (SSVEP)-based brain–computer interfaces (BCI) [3]. However, it is limited in terms of 
possible target numbers and, consequently, inappropriate for certain applications involving liquid crystal display 
(LCD) with multiple stimuli. With this method, a BCI system with 15 targets was developed using three stimulus 
frequencies, which is five times as many targets as the traditional method. Brain-computer interface (BCI) is a 
system that provides an alternate non muscular communication/control channel for individuals with severe 
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neuromuscular disabilities. With proper training, individuals can learn to modulate the amplitude of specific EEG 
electroencephalographic components (e.g., the 8–12 Hz rhythm and 18-26 Hz rhythm) over the sensor motor cortex 
and use them to control a cursor on a computer screen. Conventional spectral techniques for monitoring the 
continuous amplitude fluctuations fail to capture essential amplitude/phase relationships of the rhythms in a compact 
fashion and, therefore, are suboptimal. By extracting the characteristic rhythm for a user, the exact morphology can 
be characterized and exploited as a matched filter 
 
An electroencephalographic (EEG) brain–computer interface (BCI) internet browser was designed and evaluated 
with 10 healthy volunteers and three individuals with advanced amyotrophic lateral sclerosis (ALS), all of whom 
were given tasks to execute on the internet using the browser [4]. Participants with ALS achieved an average 
accuracy of 73% and a subsequent information transfer rate (ITR) of 8.6 bits/min and healthy participants with no 
prior BCI experience over 90% accuracy and an ITR of 14.4 bits/min. FuRIA, a trainable feature extraction 
algorithm for noninvasive brain–computer interfaces (BCI) is based on inverse solutions and on the new concepts of 
fuzzy region of interest (ROI) and fuzzy frequency band [5]. FuRIA can automatically identify the relevant ROI and 
frequency bands for the discrimination of mental states, even for multiclass BCI. Once identified, the activity in 
these ROI and frequency bands can be used as features for any classifier. The evaluations of FuRIA showed that the 
extracted features were interpretable and can lead to high classification accuracies. 
 
Mental state estimation is potentially useful for the development of asynchronous brain–computer interfaces [8]. In 
this study, four mental states have been identified and decoded from the electrocorticograms (ECoGs) of six 
epileptic patients, engaged in a memory reach task. A novel signal analysis technique has been applied to high-
dimensional, statistically sparse ECoGs recorded by a large number of electrodes. The strength of the proposed 
technique lies in its ability to jointly extract spatial and temporal patterns, responsible for encoding mental state 
differences. Brain Computer interface (BCI) is a system which allows direct translation of brain states into actions, 
bypassing the usual muscular pathways [9]. A BCI system works by extracting user brain signals, applying machine 
learning algorithms to classify the user’s brain state, and performing a computer-controlled action. They developed 
an automated approach which systematically analyzes the relative contributions of different preprocessing and meta-
classification approaches. They applied this procedure to three data sets drawn from BCI Competition 2003 and BCI 
Competition III, each of which exhibit very different characteristics. The final classification results compare 
favorably with those from past BCI competitions. Additionally, it analyze the relative contributions of individual 
preprocessing and meta-classification choices and discuss which types of BCI data benefit most from specific 
algorithms, the only source of control in any BCI system. Artifacts are undesirable signals that can interfere with 
neurological phenomena. An important determinant of the value of quantitative neuro imaging studies is the 
reliability of the derived information, which is a function of the data collection conditions [10]. Near infrared 
spectroscopy (NIRS) and electro encelphalography are independent sensing domains that are well suited to explore 
principal elements of the brain’s response to neuro-activation, and whose integration supports development of 
compact, even wearable, systems suitable for use in open environments.  
 
Brain–machine interfaces (BMIs) provide a versatile tool for rehabilitation of severely disabled people [11]. Current 
BMI systems focus on the control of kinematic variables. However, this approach limits the application space of 
BMI technology to simulated environments. BMI systems that are aimed toward prostheses must, then, control 
interaction forces with their environments. They designed a BMI-driven architecture that provides a critical link 
between neuronal ensemble activity and real-world dynamics. P300 spellers are mainly composed of an interface, by 
which alphanumerical characters are presented to users, and a classification system, which identifies the target 
character by using acquired EEG data [12]. They proposed modifications both to the interface and to the 
classification system, in order to reduce the number of required stimulus repetitions and consequently boost the 
information transfer rate.  
 
Brain–machine interface (BMI) systems hold the potential to return lost functions to patients with motor disorders 
[14]. To date, most efforts in BMI have concentrated on decoding neural activity from forearm areas of cortex to 
operate a robotic arm or perform other manipulation tasks. Efforts have neglected the locomotion functions of hind 
limb/trunk cortex. However, the role of cortex in hind limb locomotion of intact rats, which are often model systems 
for BMI testing, is usually considered to be small. Thus, the quality of representations of locomotion available in 
this area was uncertain. The compensating changes between a subjects training and testing session in brain–
computer interfacing (BCI) is challenging but of great importance for a robust BCI operation [15]. They show that 
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such changes are very similar between subjects, and thus can be reliably estimated using data from other users and 
utilized to construct an invariant feature space.  
 

EXPERIMENTAL SECTION 
 

INDEPENDENT COMPONENT ANALYSIS 
Independent component analysis (ICA) is a method for finding underlying factors or Components from multivariate 
(multidimensional) statistical data. What distinguishes ICA from other methods is that it looks for components that 
are both statistically independent, and non-gaussian. ICA is a technique to separate linearly mixed sources. For 
instance, define the time courses of 2 independent sources A (top) and B(bottom) as shown in Fig 1. 

 
Fig 1 Source Signal and Artifact Signal 

 
Let the two sources are mixed. The top curve is equal to A minus twice B and the bottom the linear combination is 
1.73*A +3.41*B. Input these two signals into the ICA algorithm which is able to uncover the original activation of 
A and B. 
 

                                
Fig 2 Recover of Source Signals 

 
The algorithm cannot recover the exact amplitude of the source activities. By trying this with we have to see 
different degree of noise that it's quite robust. ICA can only extract sources that are combined linearly shown in fig 
2. 
 
Whitening the data 
A first step in many ICA algorithms is to whiten (or sphere) the data. This means that we remove any correlations in 
the data, i.e. the different channels (matrix Q) are forced to be uncorrelated. A geometrical interpretation is that it 
restores the initial "shape" of the data and that then ICA must only rotate the resulting matrix (see below fig 3). 
Once more, let's mix two random sources A and B. At each time, in the following graph, the value of A is the 
abscissa of the data point and the value of B is their ordinates. Let take two linear mixtures of A and B and plot these 
two new variables , 
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Fig 3.Representation of Two Linear Mixtures of A & B                       Fig 4 Whitened Image 
 

 
Fig 5 Rotation of Original A and B Axis 

 
Whitening the two linear mixtures (shown in fig 4), the variance on both axis is now equal and the correlation of the 
projection of the data on both axis is 0 (meaning that the covariance matrix is diagonal and that all the diagonal 
elements are equal). Then applying ICA only mean to "rotate" this representation back to the original A and B axis 
space. The whitening process is simply a linear change of coordinate of the mixed data. Once the ICA solution is 
found in this "whitened" coordinate frame, the ICA solution can be re projected back into the original coordinate 
frame shown in fig 5. 
 
ICA algorithm  
Intuitively let the ICA rotates the whitened matrix back to the original (A,B) space. It performs the rotation by 
minimizing the Gaussianity of the data projected on both axes (fixed point ICA).  
 
 

                                                                        
 

Fig 6 Projection of  2 Arms                                 Fig 7 Contrast of Projection of Original A,B far from Guassian 
 
The projection on both axis is quite Gaussian (i.e., it looks like a bell shape curve shown in fig 6). By contrast the 
projection in the original A, B space far from gaussian.            
 
By rotating the axis and minimizing Gaussianity of the projection in the first scatter plot, ICA is able to recover the 
original sources which are statistically independent (this property comes from the central limit theorem which states 
that any linear mixture of 2 independent random variables is more Gaussian than the original variables). In Matlab, 
the function kurtosis (kurt() in the EEGLAB toolbox; kurtosis() in the Matlab statistical toolbox) gives an indication 
of the gaussianity of a distribution (but the fixed-point ICA algorithm uses a slightly different measure called 
negentropy) shown in fig 7.The Infomax ICA in the EEGLAB toolbox (Infomax ICA) is not as intuitive and 
involves minimizing the mutual information of the data projected on both axes. However, even if ICA algorithms 
differ from a numerical point of view, they are all equivalent from a theoretical point of view. 
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 Fig 8 Mixing and Unmixing Matrix of ICA 
 
Here the EEG Signals are referred as the Source Signals. The Mixing matrix is composed of both EEG signals and 
the Head Movement Artifact Signals. Since the Head Movement Artifact signals are generated along the EEG signal 
for the movement of user’s head. In the Un mixing Matrix, the Head Movement signals are alone passed along the 
EEG signals with the Head Movement Artifacts. Head Movement Artifacts are obtained separately with the help of 
Accelerometer, it is a sensor which measures the acceleration in the x,y and z axis and produces the three equivalent 
output voltage for the three different axis. The ICA compares the both signal, the signals correlated with each other 
are referred as Artifacts and are removed. So, the obtained EEG output is free from the Head Movement Artifacts 
shown in fig 8. 
 
ICA IMPLEMENTATION FOR THE HEAD MOVEMENT ARTIFACTS REDUCTION 

 
 

Fig 9 Removal of Head Movement Artifacts 
 
The EEG Electrodes are attached to the user’s head along with the Accelerometer ADXL335. 
 
The user is asked to perform a mind task along with the Head movement; the EEG signal obtained for this activity is 
recorded separately. Then at the same time, the Accelerometer (ADXL335) output for the above activity is recorded 
separately. The Accelerometer signal obtained for the three different axes x, y and z are analog signal. Hence it 
should be converted to the Digital format to make it readable by the computer. 
 
It is performed by using the Microcontroller PIC16F877A, in which 3 analog inputs are converted into serial digital 
outputs. Then this Serial Digital Outputs are passed to the Computer by using the Serial to USB Converter. Then the 
cable is connected between the USB port and the Serial to USB Converter. Thus the Signals are accessed from the 
USB Port. The Both of the Signals (EEG signal and the Accelerometer Signals) are passed to the ICA(Independent 
Component Analysis) Tool as shown in the Fig 9.Hence, the Mixing Matrix contains both of the EEG Signal With 
Head Movement Artifacts and the Head Movement Artifacts(Accelerometer Signal).Then from the both signals, the 
signals which are correlated with each other are referred to as Artifacts, Hence from the Un mixing matrix the 
Artifact signal is separated from the EEG signal. Thus the Signal obtained from the ICA gives the EEG Signal 
without the Head Movement Artifacts. 
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RESULTS AND DISCUSSION 
 

ACCELEROMETER READING IN PC 
 

                     
 

Fig 10 Accelerometer Connection to PC                                      Fig 11 Accelerometer Interface to PC Kit 
 
The Tri-Axial Output from the ADXL335 Accelerometer (X,Y and Z axis) is passed to the AN5,AN6 and AN7 pins 
of the PIC165877A.The Accelerometer is provided with the constant supply of  3V.The PIC165877A is coded in 
Embedded C to convert the obtained Analog Signals from the AN5,AN6 and AN7 pins into Digital Signal and 
transmits as a serial signal to the TX Pin and at the same time it is received at the RX pin of the Serial to USB 
Converter, which passes the received Digital signals to the USB Port of the PC. It is shown in Fig 10. The 
Accelerometer is attached to the wearable cap which is shown as in the Fig 11. 
 
EEG AND ACCELEROMETER SIGNAL ACQUISTION 
The EEG Electrodes are connected to the different lobes of the user such as in the points F3,F4,Fp1,Fp7,Pz,Cz,C3,C4 
respectively Since, the EEG electrodes receive the different types of the EEG signals from the different points.These 
Signals are received at the range of Micro-Volts.So, the necessary amplification is provided in order to read these 
signal in the PC. The BRAINLAB is a software, which is used to read these obtained EEG from the different lobes 
in the PC and are recorded imultaneously.These signals are converted into coordinate value and are plotted into the 
MS-Excel sheet by using the function Export to Excel Sheet. on plotting these coordinate values in the Matlab 
R2012.  
 

 
 

Fig 12 Input EEG Signal 
 
It is the Input EEG Signal plotted for the EEG signal obtained from the Different Lobes of the User’s Brain such that 
the Different Lobes produces the different signal output for the Same Mind Task. The above signal in the Fig 12 is 
the affected EEG signal because of the Artifacts. These Data are to be stored as .mat(workspace File) in order to 
apply it in ICALAB. The Preprocessing of the Accelerometer Signal is performed in the ICALAB Tool Box  
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Fig 13 The Accelerometer Signal without any preprocessing 

 

 
 

Fig 14 ICA Output for the Accelerometer Data Input 
  
The Fig 14 Shows the ICALAB output for the workspace data of Accelerometer Input at the sample rate of 512 Hz.  

 
Fig 15 Reconstructed Accelerometer signal – Deflation output 

 
The Fig 15 shows the reconstructed accelerometer signal output, which are passed along with the EEG signal as the 
ICA input.  
 

 
 
 
 
 

 
 
 
 
 

Fig 16 EEG Signals without Artifacts 
     
Fig 16 shows the ICA Output, such that the Artifacts present in the EEG signal of the Different Lobes are removed 
successfully. It is the EEG signal which does not contain Head Movement Artifacts. 
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CONCLUSION 
 

The Head Movement Artifacts present along the Input EEG Signal is removed successfully using the Independent 
Component Analysis(ICA).The EEG signal without the Head Movement Artifacts looks like a Pure EEG signal, 
since Head Movement Artifacts are the most interrupted portion of Artifacts in the EEG signals. The Eye Blinks 
Artifacts, Respiratory Artifacts can be removed easily by applying Adaptive Filters, but the Head Movement 
Artifacts cannot be removed by applying filters. Thus, the accelerometer is used to record the Head Movement 
Artifacts and applied with the EEG signal to the ICA. From the Unmixing Matrix of ICA, the EEG signal without 
the Head Movement Artifacts are obtained. 
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