# Journal of Chemical and Pharmaceutical Research, 2016, 8(3):295-298



**Research Article** 

ISSN : 0975-7384 CODEN(USA) : JCPRC5

# Oregonin from the barks and xylems of Chinese Alnus species

Ha-Na Choi<sup>1#</sup>, Seo-Woo Joung<sup>1#</sup>, Hye-Young Jin<sup>2</sup> and Sun-Eun Choi<sup>1\*</sup>

<sup>1</sup>Department of Cosmetology Science, Nambu University, GwangJu Metropolitan City, Republic of Korea <sup>2</sup>Division of Horticulture and Education, Korea National Arboretum, 487-821, Pocheon-si, Republic of Korea # These authors contributed equally to this work

# ABSTRACT

A diarylheptanoid, (5S)-1,7-bis-(3,4-dihydroxyphenyl)-5-hydroxyheptane-3-on-5-O- $\beta$ -D-xyiopyranoside, named as oregonin (1), was isolated from the barks and xylems of Alnus ferdinandi-coburgii C.K. Schneid. which is a species of the genus Alnus species, growing throughout China. The structure elucidation was accomplished by various spectroscopic methods including Negative FAB-MS, <sup>1</sup>H-NMR and <sup>13</sup>C-NMR techniques or comparison with authentic samples.

Keywords: Alnus ferdinandi-coburgii, Betulaceae, diarylheptanoid, Chemotaxonomy

# INTRODUCTION

Genus Alnus refers to deciduous broad-leaved trees or shrubs found in damp areas and mountains and comprises of more than 10 species, A. ferdinandi-coburgii, A. cremastogyne, A. lanata, A. nepalensis, A. henryi, A. mandshurica, A. hirsuta, A. formosana, A. japonica, A. trabeculosa are growing in China[1]. The barks and xylems of Chinese Alnus species as well as 95% EtOH extracts of A. nepalensis (bar code; FBM021-002), A. japonica (bar code; FBM068-027) and A. ferdinandi-coburgii(bar code; FBM071-014) were purchased from the International Biological Material Research Center.

## previous work

Diarylheptanoids are characteristic components of the *Alnus* species[2,3]. Several interesting biological activities of diarylheptanoids including their anti-inflammatory[4-7] and anti-oxidant properties[8] and anti-atopic dermatitis[19] have previously been reported. In a previous study conducted in our lab, quantitative analysis of diarylheptanoids including oregonin (1) was conducted using HPLC on *Alnus japonica*, *Alnus hirsuta and Alnus hirsuta* var. *sibirica*[9], *Alnus pendula*, *Alnus firma*, *Alnus maximowiczii*[10], *Alnus tinctoria* Sarg., *Alnus japonica* (stem, leaf), *Alnus hirsuta* (stem, leaf) and *Alnus hirsuta Turcz* var. *sibirica* Fischer (stem, leaf)[11].

Here, as part of our continuous search for diarylheptanoids from new natural sources, we describe the isolation and identification of oregonin (1) from the barks and xylems of *A. ferdinandi-coburgii* and screening of oregonin (1) from some other *Alnus* species *A. nepalensis* and *A. japonica*.

# EXPERIMENTAL SECTION

# General experimental procedure

Thin layer chromatography (TLC) was carried out using a pre-coated silica gel 60  $F_{254}$  plate (Merck, Darmstadt, Germany) on chloroform, methanol and water (70:30:4, volume ratio). The spots were detected under UV radiation (254 nm) and by spraying with FeCl<sub>3</sub> and 10% H<sub>2</sub>SO<sub>4</sub> followed by heating.

The components from the *Alnus* species were identified by several instrumental analyses. The 1 D NMR such as <sup>1</sup>H-(300 or 600MHz) and <sup>13</sup>C- (75 or 150MHz) nuclear magnetic resonance (NMR) experiments were recorded with Gemini 2000 and VNS (Varian, Palo Alto, CA, USA) at center for research facilities on Chung-Ang University. Low resolution fast atom bombardment mass spectrum (LRFAB-MS) were recorded with JMSAX505WA (JEOL, Tokyo, Japan) at National Center for Inter-University Research Facilities on Seoul National University.

# Quantitative analysis of Oregonin (1) of Chinese *Alnus* species using high pressure liquid chromatography (HPLC) :

HPLC was used for the quantitative analysis of the oregonin contents. An Waters 600 series HPLC system (Milford, MA, USA), was employed and equipped with a vacuum degasser, a binary pump, a UV detector and column compartment. Oregonin (1) was separated on Kromasil 100-5 C18 ( $4.6 \times 250$  mm, 5µm particle) with an linear gradient water: acetonitrile = 90:10 to 60:40 for 30 min. The column temperature was maintained at room temperature and the flow rate was 1.0 ml/min. The system was monitored at 280 nm ( $\lambda_{max}$  of 1) eluting at 18.64 min. Oregonin was detected in all extracts. We were able to quantify oregonin (1) from the barks and xylems extract of *A. ferdinandi-coburgii* (0.70 ± 0.001%), *A. nepalensis* (0.71 ± 0.002%) and *A. japonica* (0.70 ± 0.002%) using a calibration equation (y=5201.9x-47967; R<sup>2</sup>=0.9985).

**Oregonin** (1) : Brown amorphous powder, Negative FAB MS: m/z 477 [M-H]<sup>-</sup>, <sup>1</sup>H-NMR (600MHz, DMSO-d<sub>6</sub>+D<sub>2</sub>O):  $\delta$  6.74-6.71 (4H in total, H-2',2",5',5"), 6.53-6.50 (2H in total, H-6", 6'), 4.31 (1H, br d, *J*=7.8Hz, xyl-1), 4.14 (1H, m, H-5), 3.86 (1H, dd, *J*=11.4, 6Hz xyl-5e), 3.54(1H, m, xyl-4), 2.83-2.52 (8H in total, H-1,2,4,7), 1.80-1.76 (2H in total, m, H-6) [12-14]. <sup>13</sup>C-NMR (150 MHz, DMSO-d<sub>6</sub> + D<sub>2</sub>O): see Table 1[12-14].

| Carbon No. | Compound 1 |
|------------|------------|
| C-1        | 29.7       |
| C-2        | 46.1       |
| C-3        | 210.6      |
| C-4        | 48.2       |
| C-5        | 76.1       |
| C-6        | 38.3       |
| C-7        | 31.4       |
| C-1'       | 133.9      |
| C-1″       | 134.9      |
| C-2'       | 116.1      |
| C-2″       | 116.2      |
| C-3′       | 145.9      |
| C-3″       | 145.9      |
| C-4′       | 144.0      |
| C-4″       | 144.3      |
| C-5′       | 116.4      |
| C-5″       | 116.5      |
| C-6′       | 120.5      |
| C-6″       | 120.4      |
| Xyl-1      | 104.0      |
| Xyl-2      | 74.6       |
| Xyl-3      | 77.5       |
| Xyl-4      | 70.8       |
| Xyl-5      | 66.6       |

Table 1. <sup>13</sup>C-NMR spectra of Compound 1

\* 150 MHz (DMSO-d<sub>6</sub> + D<sub>2</sub>O)

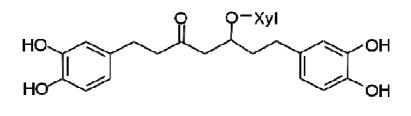
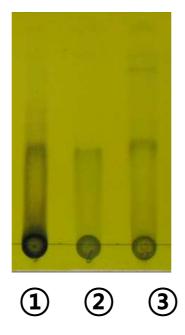




Fig. 1. Chemical structures of compound 1 isolated from Alnus ferdinandi-coburgii



Fig. 2. Comparative result of TLC chromatogram (10% sulfuric acid test)

TLC conditions: stationary phase (Silica gel 60 F<sub>254</sub>), developing solvent[(CHCl<sub>3</sub>/MeOH/H<sub>2</sub>O(70:30:4)] and detection (diluted sulfuric acid test solution for spraying 105 °C, 5min), (DA. japonica, (DA. nepalensis, (D) A. ferdinandi-coburgii



### Fig. 3. Comparative result of TLC chromatogram (FeCl $_3$ test)

TLC conditions: stationary phase (Silica gel 60 F<sub>254</sub>), developing solvent[CHCl<sub>3</sub>/MeOH/H<sub>2</sub>O(70:30:4)] and detection (FeCl<sub>3</sub> test solution for spraying, dry), (DA. japonica, (DA. nepalensis, (DA. herdinandi-coburgii

| Table 2. Retention time of Oregonin | (1) from Cl | hinese Alnus species |
|-------------------------------------|-------------|----------------------|
|-------------------------------------|-------------|----------------------|

| Material                                  | Retention time (min)<br>Oregonin (1) |  |
|-------------------------------------------|--------------------------------------|--|
| Materia                                   |                                      |  |
| Standard                                  | $18.64 \pm 0.01$                     |  |
| A. japonica (barks and xylems)            | $18.74 \pm 0.15$                     |  |
| A. nepalensis (barks and xylems)          | $18.63 \pm 0.02$                     |  |
| A. ferdinandi-coburgii (barks and xylems) | $18.65 \pm 0.03$                     |  |

The results are expressed as means  $\pm S.D$  (n=3).

| Table 3. Contents of Oregonin | n (1) from Chinese Alnus species |
|-------------------------------|----------------------------------|
|-------------------------------|----------------------------------|

| Material                                            | Contents (%)   |
|-----------------------------------------------------|----------------|
| Material                                            | Oregonin (1)   |
| A. japonica (barks and xylems)                      | $0.70\pm0.002$ |
| A. nepalensis (barks and xylems)                    | $0.71\pm0.002$ |
| A. ferdinandi-coburgii (barks and xylems)           | $0.70\pm0.001$ |
| The results are expressed as means $\pm S.D$ (n=3). |                |

### **RESULTS AND DISCUSSION**

#### **Chemotaxonomic significance**

This is a report on the isolation and identification of oregonin (1) from *Alnus ferdinandi-coburgii* Since the initial isolation of oregonin (1) from *Alnus rubra*[14], and oregonin (1) has only been distributed among *Alnus hirsuta*[3], *Alnus cordata, Alnus incana, Alnus virdis* and *Alnus glutinosa*[15] *Alnus japonica*[16], *Alnus serrulatoides*[12,13], *Pinus flexilis*[17], *Alnus pendula*[10,18] and *Alnus tinctoria*[11].

### Acknowledgements

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (Ministry of Education) [NRF-2010-355-E00067] and this study was supported (in part) by research funds from Nambu University, 2016.

### REFERENCES

[1]. Flora of China, Missouri Botanical Garden Press, St. Louis, and Science Press, Beijing, 4, 301–304. (1999).

[2] Y Asakawa. B. Chem. Soc. Jpn., 1971, 44, 2761.

[3] MW Lee; T Tanaka; GI Nonaka; I Nishioka. *Phytochemistry*, **1992**, 31, 2835.

[4] MW Lee; NY Kim; MS Park; KH Ahn; SH Toh; DR Hahn; YC Kim; HT Chung. Planta. Med., 2000, 66, 551.

[5] MW Lee; JH Kim; DW Jeong; KH Ahn; SH Toh; YJ Surh. Biol. Pharm. Bull., 2000, 23, 517.

[6] JM Han; WS Lee; JR Kim; JS Son; KH Nam; SC Choi; JS Lim; TS Jeong. J. Agr. Food. Chem., 2007, 55, 9457.

[7] JM Han; WS Lee; JR Kim; JS Son; OH Kwon; HJ Lee; JJ Lee; TS Jeong. J. Agr. Food. Chem., 2008, 56, 92.

[8] YA Lee; DW Jeong; KH Kim; JS Kim; SW Kim; MW Lee. Yakhak Hoeji, 2000, 47, 193.

[9] HW Lim; MK Kim; HJ Kim; JG Shim; GH Kim; HK Choi; MW Lee. Kor. J. Pharmacog., 2004, 35, 384.

[10] SE Choi. Asian Journal of Chemistry, **2013**, 25, 6989.

[11] EK Ko; HN Choi; HY Jin; SE Choi. JOCPR., 2015, 7, 234.

[12] S Ohta; T Aoki; T Hirata; T Suga. J. Chem. Soc., 1984, 1, 1635.

[13] T Suga; S Ohta; T Hirata; T Aoki; Chem. Lett., 1982, 6, 895.

[14] JJ Karchesy; ML Laver; DF Barofsky; E Barofsky. Chem. Commun., 1974, 649.

[15] NR Guz; P Lorenz; JP Metraux. Biochem. Syst., 2002, 30, 471.

[16] T Aoki; S Otha; T Suga. Phytochemistry, 1990, 29, 3611.

[17] KK Lee; BD Bahler; GA Hofman; MR Mattern; RK Johnson; DGI. Kingston. J. Nat. Prod., 1998, 61, 1407.

[18] SE Choi; KH Park; MH Kim; JH Song; HY Jin; MW Lee. Natural Product Sciences., 2012, 18, 106.

[19] SE Choi; MS Jeong; MJ Kang; DI Lee; SS Joo; CS Lee; H Bang; MK Lee; SC Myung; YW Choi; K Lee; SJ Seo; MW Lee. *Exp. Dermatol*, **2010**, 19, e37.