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ABSTRACT 
 
The classifier performance will be affected by the parameters of the model. However, how to effect diagnose and 
classify disease using the optimum model is becoming an urgent issue. In this paper, we propose two new classifiers 
that can automatically search for the optimum parameters of the model. We called these two classifiers are 
Nested–Random Forest (Nested-RF) classifier and Nested–Support Vector Machine (Nested-SVM) classifier. Five 
datasets of cancer (brain cancer, colon cancer, DLBCL, leukemia, prostate cancer) and one disease (Parkinson's) 
datasets were used to evaluate the performance of the proposed classifiers. Our results show the superior 
performance of the Nested-SVM classifier. Compared to the other three classifiers, the Nested-SVM classifier can 
improve classification performance (ranged from 2 to 5% in accuracy, sensitivity, and specificity) in cancer 
classification. In Parkinson's disease classification, the Nested-SVM classifier shows the superior performance with 
the accuracy up to 93% that are 20% more than the results from other three classifiers. The results imply that the 
Nested-SVM classifier has the potential of becoming the standard of setting classifier parameters and maybe suitable 
for the diagnosis of patients with cancers and Parkinson’s disease. 
 
Key words: cancer classification, disease classification, optimizing parameter, ANOVA, nested - random forest, 
nested - support vector machine 
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INTRODUCTION 
 

Cancer is the most deadly genetic disease; it occurs either through epigenetic changes or mutations that lead to altered 
gene expressions profile of cancerous cells. Meanwhile, Parkinson’s and other neurodegenerative illnesses common in 
the elderly are on their way to overtaking cancer as a leading cause of death according to the statistics of United 
Nations [1]. Currently, how to effect diagnose and classify cancer and Parkinson’s disease based on new developed 
gene expression profiles are becoming an important challenge [2]. Microarray technologies now provide wealth 
information by screening thousands of genes simultaneously and determining the different expression levels of genes 
in normal or diseased cells. Over the past few years, microarray-based gene expression profiling has proven to be a 
promising approach in predicting disease classification and prognosis outcomes [3]. 
 
Disease classification, such as cancer classification, has been extensively studied recently. The classification 
performance maybe influenced by many factors ranged from incomplete data to the choice of parameter values for a 
given model. Statistical methods, such as discriminate or regression, have been widely used in early years. Advanced 
machine learning techniques have been developed for solving classification problems. Among them are artificial 
neural networks, decision trees, support vector machines, random forest, and rough set theory. Support vector machine 
(SVM) and Random forest (RF) are arguably two of the most important development in supervised classification of 
cancer.  SVM is an emerging data classification technique first developed by Vapnik [4], and it often achieves 
superior classification performance compared to other learning algorithms. In clinical bioinformatics, SVM is 
effective in the construction of cancer diagnostic models based on gene expression data with thousands of genes and as 
little as few dozen samples [5, 6]. Random forest, however, is an algorithm for classification that uses an ensemble of 



Austin H. Chen and Chia Hung Lin
______________________________________________________________________________

classification Trees [7]. A concept of ensemble voting is developed in order to improve the classific
RF can get better classification accuracy by growing an ensemble of trees and letting them vote for the most popular 
class [8, 9, 10]. 
 
In both SVM and RF, the model for classification is generated from the training samples. Classification
performed based on the trained model with parameters. If the parameter values are not set properly, then the 
classification outcomes will be less than optimal. In many methods of selecting optimum parameters, grid search is the 
simplest way that produces the high classification accuracy from sets of parameter values. However, this type of 
search is a local search and prone to a local optimality.  To improve the grid search technique, an approach that 
combines genetic algorithms and the SVM is devel
genetic algorithms to generate a set of parameter values for SVM [11, 12].
 
This study proposes two approaches that apply nested cross
in the Nested-RF classifier and Nested
discusses the materials and methods used in this paper.  Section III presents the results of four classifiers. Section IV 
summaries the conclusion. 
 

This study develops two classifiers 
Machine (Nested-SVM) classifier - 
variance (One Way ANOVA) was used for gene selection method due to the multiple classes of the datasets.
 
2.1.Data source and experimental flowchart
To compare the classification performance, we apply these classifiers to the patients with five kinds of 
cancer, colon cancer, DLBCL, leukemia, and prostate cancer) and the Parkinson’s disease. The microarray datasets are 
available in the Gene Expression Omnibus (GEO) database. The characterics of six microarray datasets is listed in 
Table 1. Related literature for each disease is also included in this table.

Table 1

Dataset name 
Number  

of 
classes 

Number 
of 

features
Brain Cancer 5 5920
Colon Cancer 2 2000
DLBCL 2 5469
Leukemia 3 11225
Prostate Cancer 2 10509
Parkinson’s disease 3 22283
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discusses the materials and methods used in this paper.  Section III presents the results of four classifiers. Section IV 

EXPERIMENTAL SECTION 
 

This study develops two classifiers - Nested-Random Forest (Nested-RF) classifier and Nested
 that can improve the performance of disease classification. One way analysis of 

variance (One Way ANOVA) was used for gene selection method due to the multiple classes of the datasets.

Data source and experimental flowchart 
To compare the classification performance, we apply these classifiers to the patients with five kinds of 
cancer, colon cancer, DLBCL, leukemia, and prostate cancer) and the Parkinson’s disease. The microarray datasets are 
available in the Gene Expression Omnibus (GEO) database. The characterics of six microarray datasets is listed in 

lated literature for each disease is also included in this table. 
 

Table 1.Data sources for five cancers and Parkinson’s disease 
 

Number 
 

eatures 

Number 
of 

samples 
Diagnostic task 

5920 90 5 human brain tumor types 
2000 62 Colon tumor and normal tissues 
5469 77 Diffuse large B-cell lymphomas and follicular lymphomas
11225 72 AML, ALL, MLL 
10509 102 Prostate tumor and normal tissues 
22283 105 Parkinson's disease,  neurological disease control, healthy control

 

 
 

Figure 1.Experimental flowchart 
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RF) classifier and Nested-Support Vector 
that can improve the performance of disease classification. One way analysis of 

variance (One Way ANOVA) was used for gene selection method due to the multiple classes of the datasets. 

To compare the classification performance, we apply these classifiers to the patients with five kinds of cancer (brain 
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Reference 
number 

[13] 
[14] 

cell lymphomas and follicular lymphomas [15] 
[16] 
[17] 

Parkinson's disease,  neurological disease control, healthy control [18] 
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The experimental flowchart is illustrated in Figure 1. 
 
Figure 1 show the five steps used in this study. The first step is to normalize the microarray dataset. The 
second step is to select a subset of genes using ANOVA gene selection method. The third step is to develop 
four classifiers, including Random Foreast (RF), Nested-RF, Support Vector Machine (SVM), and 
Nested-SVM. The fourth step is to execute the cross validation. We use the random average 3-fold cross 
validation method that randomly separates dataset into 3-fold and repeat validation 100 times in order to get 
the impartial performance results for our models [19]. The final step is to compare the classification 
performance (accuracy, sensitivity, and specificity) of these four classifiers. 

 
2.2. ANOVA gene selection method 
The Analysis of Variance (ANOVA) is a method that is suitable for the analysis of multiple-classes dataset. 
In this proposal, we propose a one-way ANOVA approach to identify the significant genes from gene 
expression profiles. The formula of Sum of squares within the classes is calculated as: 
 

( )2∑ −= ki xxSSW
 

 

Where iX
 is the value of each sample, k

X
is the average of the sample values for each of the classes. The 

formula of Sum of squares between the classes is: 
 

( )2∑ −= xxNSSB kk  
 
The next step is to calculate between groups’ mean square (MSB) and within groups mean square (MSW) 
defined as: 
 

1−
=

k

SSB
MSB

 
 
Where k-1 is the degrees of freedom associated with SSB. 
 

kn

SSW
MSW

−
=

 
 
Where n-k is the degrees of freedom associated with SSW. A new statistic, called the F-ratio is computed by 
dividing the MSB by MSW. This is illustrated below: 
 

kn

SSW

k

SSB

MSW

MSB
F

−−
==

1  
 
In an ANOVA, the F-ratio is the statistic used to test the hypothesis that the effects are real: in other words, 
that the means are significantly different from one another. The corresponding P value can be obtained using 
F value. The significant genes will be selected from the genes which have a P value less than 0.05. By 
comparing these significant genes with the real biological genes (genes that have medical evidence), we 
could prove how good of this method is. 

 
2.3.Optimum Parameter Selection Method 
In this paper, we use nested cross-validation approach to select the optimum parameters used in the 
Nested-RF classifier and Nested-SVM classifier. Nested cross-validation approach allows the simultaneously 
select the optimal parameters of a classifier and the unbiased estimation of the performance of the final 
model [6, 20]. In this paper, we used the 3-fold cross-validation to estimate the performance of classifiers.  
In order to optimize the parameters, another nested loop was used by further splitting each of these 3 training 
set into smaller training and testing set. For each combination of classifier parameters, the best parameters 
inside the inner loop of the cross-validation were selected. The best parameters were used to build the 
classification model from the original training set and then applied to the original testing set. The final 
results will be unbiased due to each of the original testing set only used once. 
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2.4. Nested–Random Forest (Nested-RF) classifier 
The Nested-RF classifier combined both nest cross-validation approach and RF classification technique. This 
new classifier is used to obtain the best classification accuracy based on optimum parameters of RF 
classifier. 
 
The parameters in Nested-RF include: 
� Mtry = square of (number of genes) 
� Ntree = {10, 20, 30, 40, 50, 60, 70, 80}  
� Mtryfactor = {0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4} 
� Nodesize = {1, 2, 3, 4, 5, 6, 7, 8} 
 
Nested-RF randomly selects the values from the interval of each parameter at a total of 30 different 
combinations. The optimum parameters were found with the best classification accuracy. 

 
2.5.Nested–Support Vector Machine (Nested-SVM) classifier 
The Nested-SVM classifier combined both nest cross-validation approach and SVM classification technique. 
This new classifier is used to obtain the best classification accuracy based on optimum parameters of SVM 
classifier. In this paper, we develop the Nested-SVM classifier using LibSVM [21] parameters and MatLab 
language. 
 
The parameters in SVM include 
� -t = {0, 1, 2, 3} 
� -d = {0, 1, 2, 3, 4, 5, 6, 7} 
� -g = {0.2/number_0f_features, 0.4/number_0f_features, 0.6/number_0f_features, 0.8/number_0f_features, 
1.0/number_0f_features, 1.2/number_0f_features, 1.4/number_0f_features,, 1.6/number_0f_features} 
� -r = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5} 
� -c = {0.1, 1, 10, 100, 1000, 10000, 100000, 1000000} 
� -h = {0, 1} 
� -wi = {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4} 
 
Nested-SVM randomly selects the values from the interval of each parameter at a total of 30 different 
combinations. The optimum parameters were found with the best classification accuracy. 

 
2.6. Confusion Matrix 
In a supervised learning, the performance can be visualized by a specific layout of a confusion matrix.  
Each column of the matrix represents the instances in a predicted class, while each row represents the 
instances in an actual class.  In two classes, confusion matrix is expressed as in Table 2 that reports the 
number of instances in each class. 

 
Table 2.Confusion matrix of two classes 

 
Predicted 
Actual True False 

True a c 
False b d 

 
The formula of Accuracy, Sensitivity, and Specificity are represented respectively as: 
 

( )d  cb a 

d a 
Accuracy

+++

+
=

 

( )ca

a
ySensitivit

+
=

 

( )db

d
ySpecificit

+
=

 
 
In the case of three classes prediction problem, a 3x3 confusion matrix associated with the three classes (for 
example, H, E, and C classes) is defined in Table 3. 
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Table 3.Confusion matrix of three classes 
 

Predicted 
 
Actual 

H E C 

H ZHH ZHE ZHC 
E ZEH ZEE ZEC 
C ZCH ZCE ZCC 

 
The number Zij represents the number of times the input is predicted to be in class j while belonging in 
reality to class i.  The number of inputs associated with class i is given by 
 

∑= j j i Z  iX
 

 
and the number of inputs predicted to be in class i is given by 
 

∑= j i j Z  iY
 

 
Therefore, the number of inputs can be summed by 
 
XH = ZHH + ZHE + ZHC 
YH = ZHH + ZEH + ZCH 
XE = ZEH + ZEE + ZEC 
YE = ZHE + ZEE + ZCE 
XC = ZCH + ZCE + ZCC 
YC = ZHC + ZEC + ZCC 

 
The values of Accuracy, Sensitivity, and Specificity in three classes are represented respectively as 
 

CXEXHX
 CCZ EEZHH Z

Accuracy
++

++
=

 

iX

iiZ
ySensitivit =

 

iY

iiZ
ySpecificit =

 
RESULTS AND DISCUSSION 

 
Since the performance of classifiers will be overestimated when using the Leave-one-out method, we verified our 
experiment using a random average 3-fold method. This method randomly separates datasets into 3-folds and repeat 
validation 100 times in order to get the impartial performance results for our model.  For ease of visualization, we 
drew a bar accuracy comparison of these 4 classifiers as shown in Figure 2. 

 

. 
 

Figure 2.Comparison of classification accuracy in five cancers and Parkinson’s disease for four kinds of classifiers 
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This figure shows the Nested-SVM classifier has the best classification accuracy. Compared to the other three 
classifiers, the Nested-SVM classifier in general has better and more stable classification accuracy in all six datasets. 
The accuracy is near 90% in all six diseases. The Nested-RF classifier, however, do not provide any benefit in this 
study. 
 
Except for the accuracy, the performance also includes sensitivity and specificity. Sensitivity measures the 
proportion of actual positives which are correctly identified as having the condition. The comparison of sensitivity is 
showed in Figure 3. 

 

. 
 

Figure 3.Comparison of classification sensitivity in five cancers and Parkinson’s disease for four kinds of classifiers 
 

Figure 3 shows apparently the advantages of the Nested-SVM classifier. Compared to the other three classifiers, the 
Nested-SVM classifier has far better classification sensitivity in all six datasets. Except for the sensitivity in brain 
cancer, which is less than 80%, all the other five diseases have a better than 90% sensitivity. 
 
Specificity measures the proportion of negatives which are correctly identified as such (e.g. the percentage of 
healthy people who are correctly identified as not having the condition). The comparison of specificity in five 
cancers and the Parkinson’s disease for four kinds of classifiers is showed in Figure 4. 

 

. 
 

Figure 4.Comparison of classification specificity in five cancers and Parkinson’s disease for four kinds of classifiers 
 

The advantages of the Nested-SVM classifier are apparent as seen in Figure 4. The Nested-SVM classifier has far 
better classification specificity in all six datasets when compared to the other three classifiers. Except for the 
specificity in brain cancer, which is less than 80%, all the other five diseases have a better than 90% specificity. 
The comparison of classification performance (accuracy, sensitivity, and specificity) for four classifiers from six 
disease microarray datasets is summarized in Table 4. 
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Table 4.Classification performance of five cancers and Parkinson’s disease for four kinds of classifiers 
 

 
Brain Cancer 

 
Colon Cancer 

 
accuracy sensitivity specificity 

 
accuracy sensitivity specificity 

RF 86.69% 64.86% 69.65% RF 83.72% 87.23% 88.21% 
Nested-RF 86.82% 66.15% 69.85% Nested-RF 81.03% 88.78% 84.22% 
SVM 86.85% 58.93% 58.95% SVM 86.18% 90.75% 88.70% 
Nested-SVM 88.66% 73.51% 73.96% Nested-SVM 85.45% 89.96% 88.61% 

 
DLBCL 

 
Leukemia 

 
accuracy sensitivity specificity 

 
accuracy sensitivity specificity 

RF 88.42% 92.04% 92.81% RF 94.26% 93.70% 95.27% 
Nested-RF 87.53% 92.63% 91.46% Nested-RF 93.38% 92.70% 94.56% 
SVM 96.89% 98.32% 97.64% SVM 96.85% 96.79% 96.98% 
Nested-SVM 97.30% 98.28% 98.20% Nested-SVM 98.06% 98.03% 98.21% 

 
Prostate Cancer 

 
Parkinson’s Disease 

 
accuracy sensitivity specificity 

 
accuracy sensitivity specificity 

RF 92.12% 90.25% 94.34% RF 69.43% 62.36% 70.62% 
Nested-RF 91.34% 88.19% 94.75% Nested-RF 66.83% 59.19% 64.38% 
SVM 92.61% 90.09% 95.39% SVM 69.78% 59.41% 75.50% 
Nested-SVM 94.31% 92.60% 96.23% Nested-SVM 93.05% 90.53% 93.83% 

 
Table 4 summarizes the classification results for five cancers and the Parkinson’s disease from four classifiers. A 
comparison of the average performance across six datasets suggests the superiority of the Nested-SVM classifier.  
Compared to the other three classifiers, the Nested-SVM classifier improves classification performance (accuracy, 
sensitivity, and specificity) at the range around 2 – 5% when it is applied to five cancer datasets. It is more 
impressive that the Nested-SVM classifier significantly improve the classification performance (accuracy, 
sensitivity, and specificity) at the range around 20% when it is applied to the Parkinson’s disease dataset. The 
average accuracy, sensitivity, and specificity can reach 93%, 90%, and 93% respectively. The results imply that the 
Nested-SVM classifier has the potential for the diagnosis and prevention of patients with cancer or the Parkinson’s 
disease. 

 
CONCLUSION 

 
This study develops two approaches, Nested-RF classifier and Nested-SVM classifier, which can automatically 
search for the optimum parameters of the model. In order to evaluate the benefits of these classifiers, we apply them 
to five cancers (brain cancer, DLBCL, prostate cancer, colon cancer, and leukemia) and the Parkinson’s disease. The 
significant genes were selected from the genes which have a P value less than 0.05 using the ANOVA gene selection 
method. A comparison of the classification results obtained from four different classifiers, the proposed 
Nested-SVM classifier is demonstrated to be the best model.  Compared to the other three classifiers, the 
Nested-SVM classifier improves classification performance (accuracy, sensitivity, and specificity) at the range 
around 2 – 5% when it is applied to five cancer datasets. It is more impressive that the Nested-SVM classifier 
significantly improve the classification performance at the range around 20% when it is applied to the Parkinson’s 
disease dataset. The average accuracy, sensitivity, and specificity can reach 93%, 90%, and 93% respectively. The 
results imply that the Nested-SVM classifier has the potential of becoming the standard of setting classifier 
parameters and maybe suitable for the diagnosis of patients with cancers and Parkinson’s disease. 
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