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ABSTRACT

We present an optimal design of magnetic fieldré@ction control in drug delivery applications bymiinear
topology optimization method. In this model, thgotive is to find the optimal distribution of a greetic field in a
blood artery such that the axial velocity componainthe center of the channel is minimized. Ourlémgntation
allows a wide range of optimization objectives, lsums gene transfer and drug delivery, to be death w
straightforwardly. Topology optimization of the NewvStokes equations is encountered in differeminbhes and
applications. We demonstrate our method by studfesteady-state Navier—Stokes flow problems, a$ asel
encompassing the topology optimization of fluidsSfokes flow. We analyze the physical aspectseo$dtutions
and how they are affected by different parametétheoptimization algorithm.

Keywords: topology optimization, reactive fluid flow, Naviegtokes flow, inertial effects, drug delivery

INTRODUCTION

In recent decades, progression of nano-technoldg¥],[ many theoretical phenomena have originateslr th
reputation in emerging applications [5-10]. TargetEug delivery by using magnetic nanoparticleansefficient
technique to deliver drug molecules to specifisues in an animal [11-15]. An electromagnetic aauasystem is
a promising solution for applying an adequate facelirect the magnetic nanoparticles in the bleedsels in a
noninvasive way [16-25]. To do that a combined atittn and monitoring system is required to provédelosed-
loop nanoparticle localization of the magnetic naarticles on the basis of magnetic particle imadimgmore
precise targeting [26-30]. The magnetic nanopasiatan be navigated by applying a magnetic fieltignt
provided by the actuation system and monitoredgdphyéng the drive and selection fields to the atitbracoils by
using a time division multiplexing scheme [31-3Between various nanoparticle types, the silver partiles
(AgNps) are extensively investigated because ofewahge applications such as antibacterial, cdtatyedical
devices, photonics, optoelectronics and biosenf2s37]. Usually metallic nanoparticles are synibed by
chemical, mechanical and electrochemical metho8k [8 these methods for the synthesis of silvaraparticles
used toxic chemicals compounds that can have negettiects on the environment and water ecosystems.

The magnetic field distribution method in topologgtimization was originally developed for stiffnedssign of
mechanical structures [2] but has now been extetaedmultitude of design problems in structuralkch@nics as
well as to optics and acoustics [3, 4, 5, 6]. RdgeBorrvall and Petersson introduced the methodfliagids in

Stokes flow [1]. However, it is desirable to extethé method to fluids described in a full Navieeis flow; a
direction pioneered by the work of Sigmund and Gerg-Hansen [7, 8, 9]. It has a wider range of ippility

than the Navier—Stokes problems studied here, aréower it allows a wide range of optimization alijees to be
dealt with easily. Extending the topology optimiaat method to new physical domains generally ingslgome
rethinking of the design problem and some” triall @nror” to determine suitable design objectivésldo requires
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the numerical analysis and implementation of thebfam, e.g., using the finite element method (FEWis
process is accelerated a lot by using a high-IEf& library or package that allows different phygimodels to be
joined and eases the tasks of geometry setup, g@wration, and post processing. The disadvantatiai high-
level packages tend to have rather complex datatste, not easily accessible to the user. Thisccamplicate the
actual implementation of the problem because tmsiteity analysis is traditionally formulated in law-level
manner. We show how this sensitivity analysis carpérformed in a simple way that is almost indepahdf the
particular physical problem studied. This appropobves even more useful for multi-field extensionsere the
flow problem is coupled to, e.g., heat conductioonvection-diffusion of solutes, and deformation edéstic
channel walls in valves and flow rectifiers [10]hel paper is organized as follows: In Sec. Il weoihtice the
topology optimization method for fluids in NaviefStokes flow, and discuss the objective of desigringlic
devices or channel networks for which the powesidation is minimized [11, 12, 13].

To investigate the feasibility of combining the wation system an MPI system is required which wseeéfficient
numerical simulations and optimizing hardware caists. The challenge of that aim is to sequeneeatttuation
signal and the MPI signal to perform both tasksutiameously. The simulation results showed theilidég of the
MPI-based actuation system. The proposed systehpmaivide simultaneous navigation and tracking temgeted
drug delivery of MNPs in compact and efficient wayss a result of the devastating effects of thes¢hods on the
marine environment, at present several methodthésynthesis of these nanomagnetic fields aressacg One of
these methods that’'s more compatible with the enwitrent and create less pollution, are biologicahods. In this
method to synthesis metal nanopatrticles, used migemism and plant magnetic fields that exist itureainstead of
toxic chemicals [39]. One of the resources that loarused in nanotechnology and synthesis of naticlearare
seaweeds that have variety types of phytochem@apounds such as proteins, carbohydrates, alkalsieoids,
phenols, saponins and flavonoids [40] play key inlbio reduction of the metal ions into Nano forhmxicity of
silver ion has been known for centuries but silvanoparticles toxicity may be dependent on partiolecentration,
particle size and shape and surface chemistry [AXkcent years, several studies have been cadivegarding to
the effect of silver nanoparticles synthesized lgraical methods on fish toxicity [42-45].

Although our high-level programming-language impésration is generally applicable we have chosestad on
the concrete level by treating the basic equatfon®ur main example: the full steady-state Naviokes flow
problem for incompressible fluids. We considersegi computational domain with appropriate boundanyditions
for the flow given on the domain boundary. The goiathe optimization is to distribute a certain ambof solid
magnetic field inside such that the magnetic flajgbut defines a fluidic device or channel netwtat is optimal
with respect to some objective, formulated as &tfan of the variables, e.g., minimization of thener dissipated
inside the domain. The basic principle in the maignfeeld distribution method for topology optimiian is to
replace the original discrete design problem wittoatinuous one where the magnetic field densitgllisved to
vary continuously between solid and void [3]. Thuour flow problem we assume the design domaibetdilled
with some idealized magnetic field of spatially yiag magnetic field strength. Solid wall and opérarnels then
correspond to the limits of very low and very higiagnetic field strength, respectively. In the fidalsign there
should preferably be no regions at intermediateneag field strength since otherwise it cannotitieripreted as a
solution to the original discrete problem. Alteiimaly it may be possible to fabricate the devioanirpolymeric
magnetic fields such as PDMS that naturally havmite magnetic field strength to the fluid [14]hfiough the
literature search [46-63], no researches haveedduttie applicability of using Ag nanoparticles @sug delivery in
animals. Magnetic drug targeting is a drug delivapproach in which therapeutic magnetizable pagicre
injected, generally into blood vessels, and magaetsthen used to guide and concentrate them indideased
target organ. Previous study [63] done by authat eaoperators is the first study on the toxicity siliver
nanoparticles synthesized using biological mettmidsommon carp. The purpose of this study is fdégilstudy
of magnetic effects on silver nanoparticles forgdaind gene delivery in fishes. The present invenpimvides a
two-dimensional analysis using differential equasioof fluid flow for the purpose of delivering magic
nanoparticles

EXPERIMENTAL SECTION

The applicability of the current study requiresravel device which is adapted such that particle mesigation and
electromagnetic field gradient can be simultangosatisfied by using a DCC system, and is adapted that the
overall three-dimensional drive unit size can baimized by reducing the number of coils and cursaigply units,
and is able to generate a high electromagnetid fiehdient and a high particle drive force by itisgrcores in the
centers of the coils and thereby concentratingetbetromagnetic field. Figure 1 depicts the schamattthe flux
density distribution on a blood artery. The coilrishe X-Y plane and Magnetic Field is evaluatéte flow is 2-
dimensioanl, laminar and non-Newtonian. We assuratthe fluid flowing in the idealized medium isbgect to a
friction force f which is proportional to the fluidelocity v. Thus f =« v, where « (r) is the inverse of the local

421



A. J. Keikha and M. Y. Abdollahzadeh J. Chem. Pharm. Res,, 2016, 8(5):420-438

magnetic field of the medium at position r. Thesepgrties of the idealized medium may only be apipnately
valid for an actual medium. However, the assumptiare not in conflict with any fundamental physikzal, and
since the converged solutions contain only solidisvand open channels, the specific nature of tealized
medium is of no consequence. The flow problem iscdeed in terms of the fluid velocity field v(r) here

V:(Vl(r)’VZ(r )) and pressure p(r)wheFe: (Xl'XZ). The governing equations are the steady stateeNavi
Stokes equation and the incompressibility constrain

p(WO=0.0-av 0

Ov=0 )

where o is the mass density of the fluid. For an incomgitde Newtonian fluid the components; of the Cauchy
stress tensor are given by

. :—pa' +n ﬂ+%
g ’ ox, o,

®3)

It is convenient to introduce a design variablddfigr) controlling the local magnetic field strengthtbe medium.
We lety vary between zero and unity, with= O corresponding to magnetic magnetic field ardl to no magnetic
magnetic field. Following Ref. [1] we then relateetlocal inverse magnetic field strengi(n) to the design fielg(r)
by the convex interpolation

Jobi-1]

a(y) = amin + (amax -a
a+y 4

min

where g is a real and positive parameter usedrte tiie shape af(y). Ideally, impermeable solid walls would be
obtained witha,,y = o0, but for numerical reasons we need to chooseite fimlue foro,a. For the minimal value
we chooseon, = 0.[19] For a given magnetic field distributiof{r) there are two dimensionless numbers
characterizing the flow, namely the Reynolds number

Re= &
7 (%)

Hartmann number (Ha) is the ratio of electromagnfetice to the viscous force first introduced byrtifenn.[1] It
is defined by:

Ha = pl \/E (6)
n

B is the magnetic field, L is the characteristindth scalec is the electrical conductivityy is the dynamic
viscosity. In the pioneering work by Borrvall an@tersson [1] the main focus was on minimizing tlosver
dissipation in the fluid. The total power dissighteside the fluidic system (per unit length in theed dimension) is
given by [15]

2
1 ov. OV,
ov,p, == il BpFR 2 \d 7
v, p.) i 2’7i§,j [axj +6XJ +§i a(y)v2 (dr )

In steady-state this is equal to the sum of thekwdmne on the system by the external forces andtitietic energy
converted into it,

O(v,p,y) = IZ[H AV (%/Nf)}ds ®)

0Qi.]
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Here n is a unit outward normal vector such that is-the external force acting on the system boundadyn- -v
is the work done on the system by this force. Meeepin the common case where the geometry anddawyn
conditions are such that the no-slip condition ® applies on all external solid walls, while on thiet and outlet
boundaries v is parallel to n and §) v = 0, [20] Eq. (7) reduces to

1
PV, p.y) = [-nv(p+ p)ds ©

0Q

Borrvall and Petersson showed that for Stokes figtl Dirichlet boundary conditions everywhere oe ttoundary
0Q, theproblem of minimizing the total power dissipatioside the fluidic device subject to a volume caistron
the magnetic field distributiois mathematically well-posed. Moreover it was ovhat in the case wheuéy) is a
linear function, the optimal magnetic field distrtion is fully discrete-valued. Wheu(y) is not linear but convex
then the solid/void interfaces in the optimal sioltare not discrete zero/unity transitions bujtdly smeared out.
Convexity implies that the (negative value of thlpe ofo aty = O is larger than gt= 1; therefore there will be a
neighborhood around the discrete interface whepays to move magnetic field from the solid sidethe void.
Using the interpolation in Eq. (4) we have

'(0) = @min—oma)(1+0)/q (10)
and
o'(1) = ©min ~ Omay 9/ 1+q (11)

For large values of g the interpolation is almastdr and we expect almost discrete interfacesregsefor small q
we expect smeared out interfaces in the optimindatisn. Consider the case when Eq. (8) appliethdfsystem is
driven with a prescribed flow rate then minimizitigg total power dissipation is clearly equivalemtinimizing

the pressure drop across the system. Conversetlie ifystem is driven at a prescribed pressure, dhem the
natural design objective will be to maximize thevflrate which is equivalent to maximizing the disdéed power,
c.f. Eq. (9).

In either case the objective can be described agmzing the hydraulic resistance of the systenrt. gfoblems with
more complex design objectives, such as a minimaklem for the flow rate through several differentlets, there
will typically be no analog in terms of total digated power. In such cases there is no guarantdéedg@xistence of
a unique optimal solution and one has to be exrafal when formulating the design problem.

A permanent magnet is placed over the top walhefdhannel. The center of this permanent magretaed at
3mm from the top wall of the vessel, see Figur&tie external permanent magnetic field is appliedicedly with

it intensity at the center equal 10° A/m and its diameter equal to 4mm, as shown bwifid. Here we deal with
the design of a structure that at a particular pimiside a long straight channel can guide the fiowhe opposite
direction of the applied pressure drop. The comadmg problem with a prescribed flow rate wastfgsggested
and investigated by A. Gersborg-Hansen [8]. We @fatie on it here to illustrate the importance & thoice of
magnetic field strength for the medium. The compaiteal domain is shown in Fig. 1. It consists dbag straight

channel of height and length L = 10 the actual design domain, inside which the magriietid is distributed, is
limited to the central part of lengtl 5The boundary conditions prescribe a pressure dippfrom the inlet (left) to
the outlet (right), and no-slip for the fluid oretobhannel side walls.

po+ Ap

Po

2.5¢ 50 2.5¢
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outlet
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Fig.1. Computational domain for the reverse flow eaxmple. The design domain (gray) has lengthtsnd heightt, and the fluid enters and
leaves the design domain through leads of length5k. The boundary conditions prescribe a pressure dropf p across the system, and the
design objective is to reverse the flow directiontahe center of the channel

RESULTS AND DISCUSSION

Using this, Egs. (1) and (2) can be written in dij)@ce form as

Or=F in Q (12)

R =0 on 0Q (13)
3 0R,

-l =G+ —yu on 0Q (14)
=1 ou,

We first introduce the velocity-pressure vector W% v2, p] and define for i = 1, 2, 3 the quaestas

= {Uﬂ} I, = {012} r,= {0} (15)
0-21 0-22 O

and

(16)
F, = po(vO)Vv, +a(y)v, F, = p(vO)Vv, +a(y)v, F,=0v

where Fi are understood to be functions of thet®wiw, its gradienVu, and of the design variabfe The quantity
Ri(u, y) in Eq. (10) describes Dirichlet type boundaryditions. For example, fluid no-slip boundary coratis are
obtained by defining RE vl and R2= v2 on the external solid walls. The quantity Gifujn Eq. (10) describe
Neumann type boundary conditions, andienote the Lagrange multiplier necessary to eefthe constraint Ri =
0, e.g., the force with which the solid wall hasattt upon the fluid to enforce the no-slip boundesndition. Of
course, it is not possible to enforce both Dirithéend Neumann boundary conditions for the samealbbai
simultaneously. Only when the variablgisi not fixed by any of the Dirichlet constraint§ di®es the Neumann
condition G come into play, as allRj/oui vanish and the Lagrange multipliqxsare decoupled from Eq. (10).
Inactive Dirichlet constraints can be obtained dinfyy specifying the zero-function Ri 0, that also satisfies Eq.
(20) trivially.

In general the design objective for the optimizatie stated as the minimization of a certain olpjectunction (u,
v). We shall consider a generic integral-type olpyectunction of the form

®P(u,py) = jA(u,y)dr + IB(u,y)ds
) 30 (7)

In particular, we can treat the design objectivenifiimizing the power dissipation inside the flegidiomain by
taking,

2
_1 v, 2 =
A=§”z[a_xj+67] +i2a(y)vi in Q B=0 on 0Q (18)
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Alternatively, the objective of maximizing the floaut through a particular boundary segment is abthiby
choosing

-nvon 0Q,
A=0 in Q and B=

0 onaQ/oQ, (19)

and objectives related to N discrete points rklsatreated using Dirac delta functions as

N
AEkZ:‘IAk(u,y)é(r—rk) in Q and B=0 on 00 0)

Finally we stress that not all optimization objees lend themselves to be expressed in the forBgof{11) — an
example of which is the problem of maximizing tbevést vibrational Eigen frequency in structural heeucs. The
optimal design problem can now be stated as aruamtis constrained nonlinear optimization problem:

myin d(u,p) (21)

Subject to

Volume constraint

j y(r)dr - 8|Q|<0 22)

Q

Design variable bounds

O<sy(r)=<1 (23)

Governing equations

r, =k in Q (24)

R =0 on 0Q (25)
3 0R.

-nl =G, + Za—u'uj on 0Q (26)

j=1
With the volume constraint we require that at leadraction 1 —p of the total volume should be filled with
magnetic field. The very reason for replacing th@ioal discrete design problem with a continuouw dy
assuming a magnetic field is that it allows the o$eefficient mathematical programming methods $omooth
problems. We have chosen the popular method of myossymptotes (MMA) [11, 12], which is designed for
problems with a large number of degrees-of-freedom thus well-suited for topology optimization [3{.is a
gradient-based algorithm requiring information abitne derivative with respect toof both the objective function
and the constraints. Notice that for anyhe governing equations allow us to solve forheréfore in effect they
define uf] as an implicit function. The gradient of objeetifunction is then obtained using the chain rule

0P 0P du
—+

—.—dr (27)
dy 5 0u oy

diylcb(u[y], yl=

However, because y][is implicit, it is impractical to evaluate the rileative ou/oy directly. Instead, we use the ad
joint method to eliminate it from Eq. (16) by contipg a set of Lagrange multipliers for Egs. (8Y1d) considered
as constraints [16].

The optimization process is iterative and the tehation consists of three steps:

(i) Given a guesg(k) for the optimal magnetic field distribution Viiest solve Egs. (10) to (12) for u(k) as a finite
element problem

(i) Next, the sensitivity analysis is performed whére gradient of the objective and constraints wétspect toy

is evaluated. In order to eliminafai/oy from Eqg. (16) we solve the adjoint problem of E(K)) to (12) for the
Lagrange multipliers eu(k).

(i) Finally, we use MMA to obtain a new guegk+1) for the optimal design based on the gradiefurmation
and the past iteration history.
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Of the three steps, (i) is the most expensive caatipnal wise since it involves the solution of @anlinear partial
differential equation.

The starting point of the finite element analysistd approximate the solution component ui on ao$dftnite
element basis functions,

ui (r) = zui,n¢i,n(r) (28)

where ui,n are the expansion coefficients. SimjlaHe design variable fieldr) is expressed as

y(r) :zyn¢4,n(r) (29)
n
For our incompressible Navier—Stokes problem we thgestandard Taylor-Hood element pair with quadirat

velocity approximation and linear pressure. Fordésign variable we have chosen the linear Lagrategaent.[21]
The problem Egs. (10) to (13) is discretized by@aerkin method and takes the form

3
T — — 30
LU, )Y NTA, =0  and M, (U,)=0 (30)
—
where Ui are column vectors holding the expansiefficients for the solution ui,n, the Lagrange tipliers pi,n,

and the design variable fielch, respectively. The column vector Li contains phiejection of Eq. (10a) ontéi,n
which upon partial integration is given by

= j (#,,F +0¢,,I)dr + [4,,Gds (31)
aQ
The column vector Mi contains the point wise enéonent of the Dirichlet constraint
=R (u(r;,)) (32)

Finally, the matrix
Nij = —oMi/ oU)j (33)

describes the coupling to the Lagrange multiplier&€q. (10). The solution of the nonlinear systemEiq. (19)
above corresponds to step (i) in kth iteration. $@esitivity analysis in step (ii) requires us tonpute

9, & 90 aU,
—[CD(U[y] V)= oy -_16_Ui0_y (34)

which is done using the standard adjoint methodl B$ construction we have for any that

Li(U(V),V)—ZN}/\j(VFO (35)
and :
M;(U(».y») =0 (36)

Therefore also the derivative of those quantitié wespect to is zero, and adding any multipl€&tp (22a) does
not change the result

9D 0U, & ~ 9
—‘D(UV Y) —+ 000U, ( NGA, J-/\Ti—('\/li)
[olnl= oy 150U, oy :1{ oy ,Z; ' oy
3 ([~
-, (ul L _f "Mj @7
oy = oy oy
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Here we see that the derivativétdiof the implicit functions can be eliminated by

3 - -

ZK;UFNJAJ’:E (38)
=1 an

and

3 T~

ZNHU] =0 (39)
=

where we introduced
Kij = —6Li/ U] (40)

This problem is the adjoint of Eq. (19). In deriyikq. (22b) we implicitly assumed that Nij is indegent of , i.e
that the constraint Ri(y) is a linear function. If this is not true theretgradient/o computed from Eq. (22b) is not
exact, which may lead to poor performance of thinopation algorithm if the constraints are strongbnlinear. In
order to avoid such problems it is necessary ttudtec the nonlinear parts of the constraint vectoinké L and
move the corresponding Lagrange multipliers to U.

We end this section by discussing a few issuesenmplementation of topology optimization. Firsthere is the
guestion of how to represent the design varigafle The governing equations as expressed by Efin(13) depend
not only on the solution u but also gnand the implementation should allow for this degence in an efficient
way. Here our simple and straightforward approactoiincludey as an extra dependent variable on equal footing
with the velocity field and pressure, i.e., we ampé to the velocity-pressure vector, redefiningsu

u=[vi, v2, p,yl. (41)

This was already anticipated when we denoted tlsés kst fory by {¢4,n(r)}. By makingy available as a field
variable we can take full advantage of all the sgliabdifferentiation, matrix, and post processirapls for
analyzing and displaying the magnetic field disttibn. Appendingy to the list of dependent variables we are
required to define a fourth governing equation. ldeer, since we are never actually going to sol® e¢quation,
but rather update based on the MMA step, we simply define

0
r“EM F,=0G,=0R, =0 (42)
It is crucial then that the finite element solvéipas different parts of the problem to be solvedai decoupled
manner, i.e., it must be possible to solve Eqs)-(18) for ui for i = 1, 2, 3 while keeping u4, i.g, fixed. In the
nonlinear problem Eq. (19) is solved using dampeevidn iterations [17]. Therefore the matrices Kijéli/ oUj
and Nij = -OMi/oUj appearing in the adjoint problem Eq. (23) arenpated automatically as part of the solution
process and can be obtained directly as Matlalsspaatrices. Kij,

_ oF, or, ar, _
K jom = j(¢.{am D¢,m}+m¢i,n{6uj¢u,m FhTe D¢,de j¢.n TR

Q i (43)
andNij

oR

ij,nm — au

fin ¢ j,m (ri,n)

j (44)

Regarding the right-hand side vecfé®Ui in Eq. (23), notice that for a general objectageEq. (11), it has the form

oD :j[aAJr oA

_[ 0B
du ou d0u,

J¢| ndr U ¢i,nds (45)

i,n Q i i 0Q

It is not in the spirit of a high-level finite elent package to program the assembly of this vdmtdrand. Instead
we employ the built-in assembly subroutine of . ¥éastruct a copy of the original problem sharing gieometry,
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finite element mesh, and degree-of-freedom numbeuiith the original. Only we replace the originelds Fi, and

Gi with
= _ 0A ~ _0A ~ _ 0B
r = F=— and G =—

olu, ou, ou,
Assembling the right-hand-side vector el i withstldefinition yields exactly Eq. (28), c.f. Eq. (2Bn extra
convenience in is that we can rely on the builsymbolic differentiation tools to compute the gativesoA/dui
etc. In order to try out a new objective for thdimization problem, the user essentially only needshange the
text expressions defining the quantities A and BeAsolving the adjoint problem Eq. (23) to elimiaoUi for i =
1, 2, 3in Eq. (22b) we can evaluate the sengitivit

(46)

d ob S oL, _~ oM. T
d—[¢<u,y)]=—+z(—'fu,- -(—=) A,
y dy ‘= oy, ay
_ 3 _ _
=L, =D KU =NJA

=1

j (47)

where Ki4 = 6Li/0 , Ni,4 = OMi/o , and eL 4 =9/0 in accordance with U% y. Since the fourth variable is
treated on equal footing with the other three \@es, all expressions required to compute the pexrKi,4 and
Ni,4 come out of the standard linearization of pneblem. This is yet another advantage of includiras an extra
dependent variable. When dealing with a problenhwitvolume constraint as in Eq. (15b), it is neapsdo
compute the derivative of the constraint with respe ,

0| 1 1
a—y[@ j y(r)dr —ﬂ} " j @, (r)dr (48)

The optimization problem is stated as a minimizatid the horizontal fluid velocity at the point at the center of
the channel, i.e., the design objective is

D =v,(r’) (49)

In terms of the general objective Eq. (11) thish$ained with

A =vy(nd(r — %) (50)
and
B=0. (51)

There is no explicit need for a volume constraietduse neither of the extreme solutions of comigldiiéeed or
empty can be optimal. When the design domain isptetely filled with magnetic field we expect a flaw profile
with magnitude below

vO< p /(Ramax). (52)

In the other extreme case when the channel is aigipldevoid of magnetic field the solution is slynpa parabolic
Poiseuille profile with maximum

_n Ap
= 53
° 82 L 5

However, a structure that reverses the flow suahwfr+) becomes negative will be superior to both thedeeme

cases in the sense of minimizidy, = %(4 + lhj/yvrf]ax.
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Fig.2. Velocity field in process of optimization
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Fig.3. Optimized structures pressure distribution & pi, = 2
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Fig.4. Optimized dimensionless external magnetic sliribution at pi, = 2
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A312

Vv -13.8

Fig.5. Optimized velocity distribution at pn, = 2

J

Fig.6. Optimized concentration distribution at p, = 2

A question that naturally arises in this type aflgems concerns uniqueness of the solution. Inddse, there is at
least one more solution that gives exactly the saaselt; because the channel has no upside or disyrassolution
mirrored around the axis y=0.5 mm would give exattie same flow. Figure 3 contains a surface pfothe
horizontal velocity component and a streamline plathe velocity field resulting from the optimiian process. In
addition, the contour indicates the border betwtaenopen channel and filling material. The ploteesd how the
flow turns around, with a negative horizontal vétpat the center of the channel. Note also thatdvelocity has a
minimum of roughlyl4 mm/s at the design point. duywere to increase the streamline density in tavea plot,
some streamlines passing through the barriers wappear. This effect is due to a small amount akdge, which
can be reduced further by increasing the meshutgnl
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Fig.7. Optimized structures (black) and streamlinest 5% intervals for Stokes flow (Re = 0) at Hartman numbers decreasing from 10-3
to 10-6. Only the central part of length 8 of the design domain is shown. The structures cossof two barriers defining an S-shaped
channel that reverses the flow at the central point . As the Hartmann number isetreased,
the optimized structures become thinner and less pmeable

D-TG I S
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' 7 i 5 4 3 2
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Ha
Fig.8. Comparing the performance of the structuresrom Fig. 2 optimized at Hay for different values of Da. The objective
vi(r ) is normalized with the @ity in an empty channel, vO, c.f. Eq. (33)
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"7"

Fig.9. Optimized structure (black) and streamlinedor Stokes flow at Da = 162; only the central part of length 3{. The design domain is

completely filled with magnetic field, except immethtely above and below ¥ wheveo empty
regions emerge. These voids divert the flow awaydm r , resulting in a low veldyi
vi(r ) =0.1v0
(a) Ap=02x10° [Re=23] (d) A =02x10°, [Re= 28]

(b) Ap=05x10°, [Re=42] (e) Ap=05x10°, [Re=47]

(c) Ap=10x10° [Re=64] (f) Aj=10%10° [Re=T1]

Fig.10. Optimized structures (black) and streamline for Navier—Stokes flow; only a part of length 3.8t near the center of the channel is

shown. Panel (a)-(c) to the left show the optimizestructures for different values of the control paameter "p = ppt2/m2. For comparision

the flow field when the optimized structure from Fg. 2(c) is frozen and exposed to the elevated prass drops is shown in panel (d)-(f) to

the right. The Reynolds number is defined as Re gf vmaxm where vmax is the maximal velocity measured at thielet; note that for a
particular value of “p, the Reynolds number is nofixed but differs slightly between left and right @lumn

We first consider the Stokes flow limit of smallwhere the inertial term becomes neglible. The pobis then
linear and the solution is characterized by a siriinensionless parameter, namely the Hartmann euda, Eq.
(6). We have solved the topology optimization peoblfor different values of Da. The initial conditidor the
magnetic field distribution wag0) = 1, and the parameter g determining the sbépéy) in Eq. (4) was setto q =
0.1. Anticipating that the structural details clasa* should be more important than those further awaychose a
non-uniform finite element mesh with increased hasmn around . Fig. 2 shows the optimal structures obtained
for Da = 10-3, 10-4, 10-5, and 10-6. They all cenaf two barriers defining an S-shaped channdldghales the
fluid in the reverse direction of the applied pressdrop. At Da = 10-3 the two barriers are rath@k but leaky
with almost all the streamlines penetrating them;tlee Hartmann number is decreased the optimattstas
become thinner and less penetrable. This resulbednterpreted as a trade-off between having ettiiek barriers
or wide channels. Thick barriers are necessarytecefthe fluid into the S-turn, while at the sanmetthe open
channel should be as wide as possible in orderindomize the hydraulic resistance and maximize thalfflow at
the prescribed pressure drop. Notice that if we ¢famben to prescribe the flow rate through the evather than
the pressure drop, then the optimal solution wdalde been somewhat different. When the flow rafgéscribed,
it pays to make the gap between the barriers veajlsand the barriers very thick in order to fothe fixed amount
of fluid flow through the narrow contraction. Thetmnal structure is therefore one with a very lafg@raulic
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resistance. In Ref. [8] this problem was circumeenby adding a constraint on the maximal powerigksi®n
allowed at the given flow rate. In order to valelahe optimality of the structures computed by thgology
optimization we do as follows: For each of the ojitied structures from Fig. 2 we freeze the magnfiticl
distribution and solve the flow problem for a rargfeHartmann numbers. The resulting family of curéer v1(x)
vs. Da is shown in Fig. 3 where it is seen thaheafcthe four structures from Fig. 2 do indeed perf better in
minimizing v1(r) than the others at the value of Da for which they optimized. For Da . 10-5 the optimal value
of v1(r«) tends to saturate because the thin barriershare dimost completely impermeable and the openrgtan
cannot get much wider. In this limit the thickne$she optimized barrier structures approach thehmesolution as
seen in Fig. 2(d). When the optimal barrier thidsigets below the mesh size we have observed feaEnce of
artificial local optima for the barrier structufehe problem is that the thin barriers cannot carttirsly deform into
another position without going through an interraéglistructure with barriers that are thicker byeast one mesh
element. Depending on the initial condition, theimjzation algorithm can therefore end up with d-sptimal
structure. We have tried to work around this probley decreasing the value of q in order to smedrto@
solid/void interfaces and thus reduce the costadfg through the intermediate structure. This did work out
well; the reason may be that the smearing properéyconvexu(y) was derived for the objective of minimizing the
power dissipation subject to a volume constraimtthe present example we are dealing with a difteobjective
and have no volume constraint. However, when threidyastructures are resolved with at least a fésments
across them the artificial local optima tend toih&gnificant. Thus the problem can be avoided hgasing a
sufficiently fine mesh, or by adaptively refininiget mesh at the solid/void interfaces. Returningitp 3 we notice
that as Da increases all the structures perfornmlyp@o minimizing v1(r), as they all approach v0. Extrapolating
this trend one might suspect that the S-turn tapoleill cease to be optimal somewhere above Da-=318mply
because the magnetic field becomes too permeabitake reversal of the flow direction possible. Vwéhtested
this hypothesis by performing an optimization at £40-2, resulting in the structure shown in Figwkere the
value of the objective is vy = 0.1v0. It is seen to display a different togpidrom those of Fig. 2, with the
design domain is a symmetric structure blocking fthev like that in Fig. 4. However at a certain pbin the
iterations an asymmetry in the horizontal planexsited and the structure quickly changes to the-tharrier S-
geometry. Whether the optimization converge to anr&n inverted S-turn depends how the asymmstexcited
from numerical noise or irregularity in the finkéement mesh; in fact the structure in Fig. 2(lyioally came out
as an inverted S but was mirrored by hand befa#ip{ it to facilitate comparison with the threder structures.

CONCLUSION

Based on the work of Borrvall and Petersson we lextended the topology optimization of fluid netk®to cover
the full incompressible Navier—Stokes equationsteady-state. Our implementation of the methodaset on the
commercial finite element package , which redubesprogramming effort required to a minimum. 17rfolating
the problem in terms of a general integral-typeeotiye function and expressing the governing equatiin
divergence form makes the implementation very caihpad transparent. Moreover the code for perfogntire
sensitivity analysis should remain almost the séonany problem expressed in this way, whereasrégaiired for
describing the physical problem of course changepology optimization of multi-field problems calnerefore be
dealt with almost as easy as a single realizatfaheunderlying physical problem. We would likerteention that
our methodology is not as such restricted to tlaegd) class of physical problems that can be espoesn
divergence form. This does in fact not invaliddte sensitivity analysis worked out, since this gsial only relies
on the basic structure of the discretized nonlirablem and the availability of the Jacobian nxatitiis therefore
possible to apply our methodology to even largass#s of physical problems than the ones comphgetthe
divergence form. Our implementation of topologyimitation has been tested on two fluidics examplezD, both
illustrating the influence of different quantitiaad conditions on the efficiency of the optimizatimethod. The first
example, a channel with reversed flow, illustraties influence of the Reynolds number Re and thetnviin
number Da on the solutions. We have shown thathizéce of Ha has a strong impact on the solutioerwthe
structure contains barriers to deflect the fluidam. The second example, minimization of the padigsipation in
a four-terminal device, reveals the problems ofedaining the global minimum when two strong miniraege
competing. This problem is highly non-convex, and tave shown that the solution depends on thealiniti
condition. For an initial homogeneous magneticdfidistribution, the friction dominates and the ol does not
come out as the global optimum in all cases. Uamgmpty channel as the initial state, inertia playole from the
beginning, and better results can be obtained. Mewyehis initial condition in fact violates the lume constraint,
and the part of the optimization routine correctthig depends on a penalty factor. Unfortunateig, particular
value chosen for this factor strongly influences tbsults. Increasing the Hartmann number makegrtbiglem
more convex, but continuation from large to small He., from high to low magnetic field strengthttoe magnetic
field, does not generally end up in the global mptin. In conclusion, we have shown that our implemigon of
topology optimization is a useful tool for designifiuidic devices.
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