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ABSTRACT 

 

This paper is concerned with a mathematical model for simulating hydrodynamics of 1D flood flows with the 

WENO(Weighted Essentially Non-oscillatory Scheme) scheme. The time discretization uses the Runge-Kutta 

TVD(Total Variation Diminishing) scheme. By using the model, the flow property of dam-break was calculated, and 

the flow velocity and water depth were obtained. The calculated results show that the WENO scheme has higher 

accuracy and better stability, and has the ability to automatically capture shock waves, and may suppress the 

oscillations of numerical solution. This model can effectively simulate the hydrodynamics of 1D river flow. 
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INTRODUCTION 

 

The flood wave caused by a dam failure can  result in the loss of human lives and has a severe economic  impact. 

Therefore, significant efforts have been carried out over the years to produce methods for determination  of the 

extent and timing of the flood wave. Most of these methods are based on the solution of the Shallow Water 

equations. There are a number of accurate and efficient methods available to solve the Shallow Water equations [1-

4].  

 

It is an important basis for validating the numerical method whether the scheme can capture the dam-break bore waves 

accurately or not. This g ives rise to  an increasing interest in  solving such a problem. From 1980 to 2000 several 

fin ite-difference schemes that handle discontinuities effectively were used to compute open -channel flows, such as 

the approximate Riemann solver [3,4]. Based on the above research results, the goal of the current work is to develop a 

mathematical model capable of dealing with hydraulic discontinuities such as steep fronts, hydraulic jump and drop, 

etc. The water governing equations has been solved by the WENO scheme and the Finite Volume Method on 

unstructured grid. 

 

MATHEMATICAL MODEL 

 

Flow Governing equations  

The one-dimensional equations in conservative form in Cartesian coordinates for unsteady gradually varied  flow in 

open channels are[5]. 
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and q is the conservation physical quantity;  f q  is the flux vector in  x  direct ion;  b q  is the source term vector; h 

is flow depth; u is depth-averaged velocity in  the x-d irect ion ;  g  is  the g rav ity  acceleration; Sox is the channel 

bottom slope in the x-direct ion and is defined as xZSox  0
, where Z0 is the bottom elevation; and Sfx is the 

friction slope in the x-direction, computed using the steady state frict ion formula
3/4222 hvuunS fx ）（  , in 

which n is the Manning’s roughness coefficient. 

 

Discretization of the flow equation 

 

The integral discretization of Eq. (1) Leads to: 

 1

1 2 1 2( ) ( )n n n n

i i i i iq q f q f q tb

                                                                                                              (2) 

 

in which q
n
 and q

n+1
 are the conservation variables for n and n+1 time steps; xt  ; t  is t ime step; x is 

space step; superscript n  indicates the time layer; subscript i  denotes space node; 
n

if 21 and
n

if 21 are the numerical 

flux in equation (1).
 

 

The key  problem of solution of Eq . (2) is to determine the normal flux o f  f q . The values of q orq may be 

discontinuous on the contacting surface of the control volumes, which is a FVM discontinuous problem, and brings 

difficult ies to the solution of  f q , and is written as    ,L Rf q f q q . The computation of the normal flux  f q  

has two important aspects: one is the computation of  ,L Rf q q , the other is the computation of 
Lq and

Rq ( usually 

is called reconstruction). 

 

Solution of normal fluxes using FDS(Flux Difference Splitting)
 

The computation of transformation normal fluxes on crossing unit boundary uses Roe’s average FDS method  [6]: 
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where  the  Roe’s  speed  is    1 2 1 2
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iq   and 1 2

R

iq   are the values of q  at the left and 

right sides of the point 21ix , respectively; thus the normal flux of the discretization equation (3) may be obtained. 

The values of 1 2

L

iq  and 1 2

R

iq   are obtained by weighting and arraying the stencils with the WENO scheme. 

 

Restructuring of WENO scheme 

Now the application of the WENO scheme is explained by the computation of 1 2

L

iq   . 

 

The idea used in the WENO schemes is: Given the stencil size k, supposing the k candidate 

stencils    1, ,r i r i r kS i x x      , 10  k,,r  , the k  kinds of different restructuring ways may be obtained: 
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Three possible interpolation stencils are: 
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The choice of stencil is shown in Figure 1: 
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Fig.1 Stencil option of WENO  scheme  

 

The expressions for 
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The definitions of coefficients are in literature [7]. 

 

These optimized  schemes for all the k candidate stencils are then convexly  combined to obtain the W ENO schemes. 

The WENO schemes use all the values of  
1

2

r

i
q



 to combine convexly to compute 1 2

L

iq  . 
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 in which 
r is the weight. 

 

Determination of Weight
r  

In order to satisfy the stability and the compatib ility, we request 0r and





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1
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r

r . Further said that if the 

function  q x  in all stencils is a smooth function, then the constant 
rd exists and satisfies: 
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After the simple algebraic operation, these coefficients in Eq.(8) may be determined and satisfies 1
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Under the smooth function situation, we have  1 k

rr xOd ,r=0,… ,k-1. In order to make the calcu lation 

more effectively, we may  use the following form the weight 





1

0

k

s

srr  





1

0

k

s

srr  ,  0, , 1r k    ,  

 2rrr d   , in which   is a real number, generally takes 
610 ,  to avoid the denominator being 

zero. k  is called “the smooth factor” as a measure of s mooth of the  kth possible interpolation reg ion, and its 

formula is given in Literature [8](Wei, 2001) . 

 

The third-order mathematical expression for the computation of 
1 2

L

iq 
is: 
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1 2

R

iq   is computed by  the similar solution method. 

 

After the solutions of 1 2

L

iq  and 1 2

R

iq  , the normal fluxes may be obtained by the Roe’s average flux- differencing-

splitting method. 
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Time processing 

Time processing may use the Rugge-Kutta method with the nature of TVD, for example, regarding the time for mth 

order,        
1
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i
i k k

ik ik

k

q q t L q 
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   , 1, ,i m   . At initial time step  0 nq q , after finishing one time-

step  calculation,   1m nq q  . 

 

One-Dimensional Dam-Break Simulation 

The scenario considered here was the total and instantaneous dam-failure on a flat and frictionless bed. This 

provides an ideal benchmark test case for shock-capturing schemes since analytical solution has been known. Figure 2 

shows the illustration of the dam-break problem, where the init ial upstream water depth was 
1h =10 m, and the 

downstream water depth was 
0h =1.The length of the computational region is 200m, and the dam was located at 

x=200 m. The grid spacing was 1 m. The t ime step was 1 s. Figure 3 shows the water surface position, and Figure 4 

shows the velocity distribution, 7.0s after dam failure by using the model, where the solid line represents the 

analytical solution and the circle points illustrate the predicted results. It can be seen that the shallower the 

downstream water depth, then the faster the flood wave travels. The agreement between the analytical and numerical 

solutions is satisfactory.  

 

 
 

Fig.2 Illustration of the dam-break problem 
 

 
 

Fig. 3 Water surface position  

 

 
 

Fig. 4 Velocity distribution 

 

CONCLUSION 

 

The WENO scheme can be employed for the solution of one-dimensional flow equations written in conservative 

form, and can effect ively simulate the rapid ly varying water waves. The proposed mathemat ical model can 
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effectively  simulate 1D flow accompanied with a dam-break. The proposed method can also be expanded to 2D the 

flows. 
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