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ABSTRACT 
 
This paper is concerned with a high-resolution mathematical model for one-dimensional (1D) hydraulic jump flows. 
The 1D shallow water equations of Saint-Venant were solved with the essentially non-oscillatory (ENO) scheme, the 
finite volume method (FVM) and the total variation diminishing (TVD) Runge-Kutta-type method. This model was 
used to predict the hydraulic jump flows, and the numerical resolutions are in agreement with the experimental 
ones, which indicate that this model is fairly effective and accurate for simulating hydraulic jump flows. 
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INTRODUCTION 
 
Hydraulic jump is formed when the state of flow changes from supercritical to subcritical one. The hydraulic jump is 
usually accompanied by an aerated recirculating roller on the top, where intensive turbulence results in energy 
dissipation and the mixing of air also takes place. The hydraulic jump is treated as a macroscopically steady 
phenomenon for engineering purposes, and temporally averaged quantities are examined.  
 
Mathematically, the hydraulic jump is commonly described by the shallow water equations (also named the Saint 
Venant equations for the 1D case). One feature of hyperbolic equations of this type is the formation of bores (i.e., 
the rapidly varying discontinuous flow). It is an important basis for validating the numerical method whether the 
scheme can capture the hydraulic jump waves accurately or not. This gives rise to an increasing interest in solving 
such a problem. Several finite-difference schemes that handle discontinuities effectively were used to compute open-
channel flows, such as the approximate Riemann solver [1-4]. In recent years, more and more high-resolution 
schemes such as MacCormack, TVD and ENO schemes [5-7] are applied into numerical simulation of discontinuous 
problem such as the shock wave. Although TVD scheme can keep the total variation diminishing, it causes the 
accuracy drop to one-order at the local extreme point of smooth area. To overcome this weakness, ENO (Essentially 
no-oscillatory) scheme [7] is proposed, which amplifies the  restriction of total variation diminishing and also allows 
a tiny increase of total variation, then the scheme is kept uniformly high resolution and essentially no-oscillatory. 
The character of ENO scheme is that it eliminates the monotonicity limit, and can adaptively choose the best 
interpolating point in the interpolating functions reconstructions.  
 
Based on the above research results, the goal of the current work is to develop a mathematical model capable of 
dealing with hydraulic discontinuities such as steep fronts, hydraulic jump, etc. The water governing equations has 
been solved by the ENO scheme.  
 
GOVERNING EQUATIONS 
The 1D equations of Saint Venant  are as follows [7]: 
 

0=+∂∂+∂∂ GxFtU                                                                                                                                         (1) 
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in which the variables U,F, and Q are defined in matrix forms as follows: ( )TQAU ,= ; 

( )TfgASG ,0= ; ( ) ( ) ( ) ηηη dBzzPP
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42 ABQQnSf = ,where t=time, x=distance, 

A=stream cross-section area, Q=discharge, G=gravity, P=hydrostatic pressure on the cross-section, z= water level, z0 

is  the lowest elevation of cross-section, ( )ηB  is the width when the water level is η , fS  is variable friction slope, 

n is the Manning coefficient, Figure 1 shows the definition sketch for general flows in channels. 
 

 
 

Fig. 1 Definition sketch for general flows in channels 
 
NUMERICAL SCHEME 
The numerical schemes include the numerical discretization of water equations, numerical flux splitting, ENO 
schemes reconstruction and time discretization [7,8]. 
 
Numerical discretization of water equations: 
The equation (1) can be discretized as [8]: 
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where xt ∆∆=λ ; t∆ =time step; x∆ =spatial step;n represents the time layer; i represents the spatial 

point; n
iF 21+ and n

iF 21− are the numerical fluxes consistent with fluxF of equation (1). 

 
Numerical flux splitting: 

The finite-difference method (FDM) was used to solve the numerical flux, such as niF 21+  ： 
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where a~ is the Roe average value of UFa ∂∂=  on LU and RU ,and is the Jacobian matrix for UFa ∂∂= . 
L
iU 21+ and R

iU 21+  are the values of U  on the left or right hand of point 21+ix  respectively, which can be computed 

by the stencil option of ENO .The Roe velocity is as follows: 
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Similarly, n
iF 21−  can be computed with same method and the values of L

iU 21- and R
iU 21-  can also be obtained by the 

stencil option of ENO schemes. 
 
ENO schemes reconstruction: 
ENO schemes adaptively choose the smoother stencil by comparing the size of divided difference. To achieve k -

order resolution schemes,k cell is needed when choosing the stencil. Total cells are added to 12 −k . Assume the k  
stencil as follows: 
 

( ) { }1,, −+−−= kririr xxiS L ,  1,,0 −= kr L ,                                                                                                        (5)  



Y. L. Liu et al                 J. Chem. Pharm. Res., 2014, 6(6):603-607         
______________________________________________________________________________ 

605 

So k different reconstruction method to calculate LiU 21+ or R
iU 21+  can be achieved: 
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where iU  is  the average value of U at point ix ,which can be written as: 
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Let the coefficient of the decided stencil whose magnitude of divided difference is minimal rw = 1, the others rw = 

0, then the stencil option is finished. 
 

If 0≥rw and 1
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rw ，then the equations was changed to WENO(Weighted ENO) schemes. 

 
Time discretization: 
The Runge-Kutta TVD method was used to discretize the equation (1). The equation can be written as [9]: 
 

( )UL
t

U =
∂

∂
                                                                                                                                                               (8)  

 

where ( )UL  is approached by ( ) GUF x −− . 

According to the Runge-Kutta TVD schemes, 
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RESULTS AND DISCUSSION 

 
The test problem relates to a hydraulic jump in a wide horizontal rectangular channel of constant width. A hydraulic 
jump is formed whenever the flow changes from super-critical flow (Fr>1) to sub-critical flow (Fr<1), where Fr 
represents the Froude number. The initial flow conditions in the horizontal channel are a depth of 0.04 m and a 
velocity of 2.65 m/s. These flow conditions give an upstream Froude number of 4.23. A Courant number of 0.8, a 
roughness coefficient of 0.003, and a fine grid spacing of 0.3 m were used. As supercritical flow has an upstream 
control, the flow variables at the upstream node were kept equal to the initial conditions. At the downstream end a 
constant depth of 0.2 m was specified and held constant for all time levels.  
 
Figure 2 is the transient depth profile. The computed results and the experimental ones are in a close agreement.  
 
Theoretically, a hydraulic jump will occur when the upstream Froude number Fr1, depth h1 and downstream depth h2 

satisfy the Bélanger formula )118(
2

1
/ 2

112 −+= Frhh . This can be used to check the results by the model. 

From the numerical results, the downstream water depth h2=0.23m. Substitution of the upstream Froude number and 
depth (Fr1=4.23, h1=0.04m) into the Bélanger formula results in the theoretical downstream depth required for the 

jump as 2ĥ =0.22m. h2 is thus very close to the theoretical downstream depth 2ĥ . The relative error is 10%. 
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The close agreement between the computed results and the experimental ones shows that the proposed method is 
comparatively accurate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Hydraulic jump steady state profiles for Fr=4.23(—computed, ○experimental) 
 
Figure 3 shows the effect of grid spacing on shock reduction. Under the same conditions that Fr1 = 4.23, h1 = 0.04m 
,the comparisons of the computed results with △x of 0.3m and 0.12m show that varying the grid spacing and 
Courant number did not alter the location of the shock front, which says that grid spacing of 0.3m has converged to 
steady state with enough accurate solution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.Effect of grid spacing on shock reduction, Fr=4.23 (—△x=0.3,△x=0.12, ○ experimental) 
 

CONCLUSION 
 

The high-resolution mathematical model has been developed for 1D shallow water equations (Saint-Venant 
equations) for the computation of hydraulic jump flows. The 1D shallow water equations were solved with the ENO 
scheme, the finite volume method (FVM) and TVD Runge-Kutta-type method. Numerical simulation for the 
hydraulic jump flows indicates that this model is fairly effective and accurate for simulating hydraulic jump flows. 
The high-resolution mathematical model can be further modified and extended to multi-dimensional hyperbolic 
conservation laws to effectively simulate 2D and 3D hydraulic jump flows. When utilizing the technique of 
boundary treatment such as a body-fitted coordinate system, the proposed model can also effectively simulate the 
hydraulic jump flows with complex boundaries. The results will be given in a future work. 
. 
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