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ABSTRACT

In this paper, based on the theory of wavelet transform, presents several new estimation method of time varying long
memory parameters, and gives the consistency and asymptotic properties of estimators of these new methods. Finally,
this paper studies the behavior of small samples of non-stationary long memory process, gives the reference solution
of some factors selected which can affect the accuracy of estimate such as wavelet scale et al. At the same time, this
paper compares the advantages and disadvantages of various estimation methods, and proves the effectiveness and
robustness of the new methods.
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INTRODUCTION

There exists much non-stationary and long memohéneconomic and financial time series. Becauseelgtis
able to reveal the characteristics of the data kiate domain and frequency domain, it has becomangortant
tool for the research of this kind of time seri¢gsTpaper, mainly based on the theory of wavebatsiorm, studies
the property of non-stationary long memory timeiesefirst reviews all the existing long memory pagder
estimation methods and classifies and analyzes timeshods, and points out the advantages and tiionisaof these
estimate methods in the application.Then the lagabvelet estimation method of time varying long meyno
parameter is improved and promoted, and on thes hEsthis method, this paper puts forward a nevimegée
method of time varying long memory parameter fon-stationary time series, applying the theory ofvelet
transform. At the same time, this paper also prawes consistency and asymptotic property of thémadgor
obtained by the new method.

Wavelet transform

Wavelet transform is an effective mathematical mdthieveloped in recent years. Because it can redaal
characteristics in the time domain and frequencyaia,and has the ability of depicting local chagastics of
events in the time domain, wavelet transform bex®ran ideal tool for studying the non-stationamyeti
series.Wavelet transform is a localized analysithow in the time(or space) and frequency domainait finally
achieve time segment in high frequency and frequesegment in low frequency through stretch andsiedion
operations to multi-scale refinement of random pssclt can automatically adapt to the requiremeint o
time-frequency signal analysis on any details & #ignal, and wavelet transform is also called heatatics
microscope".

2.1 Continuous wavelet transform
For any square integrable functibft), if it satisfies admissibility condition (2.1)

Where, the Fourier transfo#it) of¥(f) is a function of frequency f, 8t) is a basic wavelet or mother wavelet

function. AndP(t)must satisfy the following conditions:
1), that is, wavelet function has a unit of energy
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2) , that is, wavelet function is integrable andifibed function.
3), that is, wavelet function has zero mean.

The continuous wavelet transform of function(aynsil) x(t) is a binary function, which can be definby the
formula

Where, is displacement and scale stretch of théenatavelet function w , referred to as the waviededis function,
also called as wavelet. And s is a scale facto)(suBed for stretching the mother wavelet functionjs
time-displacement factor, can be positive or negdir the displacement of mother wavelet functiand in the
formula, t, s and u are continuous variables, fbeeethe transformation is called continuous wav&lnsform.

2.2 Discrete wavelet transform

Continuous wavelet transform takes a function fiamsation into binary function, so it contains age number of
additional information in the analysis of a functioThe data processed by continuous wavelet tremsie
extremely huge, which is not conducive to practeggplication.In order to overcome this shortcomiogntinuous
wavelet transform needs to be discretized. Althotlgh discrete wavelet transform can also be deriviedout
continuous wavelet transform, we still can useadt "discretization" process of continuous wavetahgform
through sampling specific scale corresponding tatinaous wavelet transform coeffici€hit not only reduces the
redundancy of continuous wavelet transform coedfits, and is also good to maintain the branch, #mess and
symmetry of the continuous wavelet transform.Diszagion of continuous wavelet transform firstlyenls to
discretize the scale factor s and time-displacerfamtor u.

The scale factor s and time-displacement factardiscretized:
So, discrete wavelet transform is:
The discrete wavelet transform of function(or siyné) is:

In the practical application, in order to improvee teffectiveness of the wavelet transform, wavélattion of

orthogonality is usually constructed. Because thgalet with the orthogonality can eliminate theretation caused
by redundancy, and can also reduce the calcul&ioor in the process of the transformation reswfsch can

accurately reflect the nature of the original sigtself.

2.3 Commonly used wavelets

Haar wavelet (shown as figure 2.1) is derived lyy faar function which is a set of functions orthogjoto each
other put forward by a mathematician A.Hdan 1910.Haar wavelet is a filter whose length 2jsand it can be
defined by scale filter (low-pass filter):

According to orthogonal mirror relationship, thewgket can also be defined by the wavelet filter

(high-pass filter) and .Haar function meets cortigasupported and orthogonal wavelet systeof Daubechies
condition, and it is the simplest wavelet of Dauties wavelet department(N=1, N denotes the highasishing
moment of Daubechies wavelet function).They caeshdhe same regularity Daubechies wavelet of N bu2 still

do not have continuity.Although the Haar wavelee#@sy to understand and implement,but becauseaitpeor
approximation of an ideal band-pass filter,it cartmefull close to the application of the real vdorl
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Figure 2.1 Haar wavelet filter
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Daubechies wavelet is derived by compactly supdoitection of the highest vanishing moment, putMard by

the famous mathematician Daubechies.Usually theaeelsts have not analytic expression, or only apEm
analytical expression, which is usually just indéchby the filter array. The simplest wavelet of Baechies wavelet
department is Haar wavelet whose scale filter dedwavelet filter is discontinuous, and it is atke only one
discrete wavelet of Daubechies wavelet departmémd others are continuous and compactly supported
wavelets.With the increase of vanishing moment Wetve becoming more and more smooth.

Extreme phase wavelet serieD (L) and minimum asymoeavelet LA (L) are two kinds of different Daethies
wavelet by choosing different decomposition waywinich L is the length of the filter.Shanii and Yesi", at the
same time, give theextremum stage and the accuaftte of the minimum asymmetric wavelet filter. Atmhger
extremum and the least asymmetry wavelet filterehzat a precise for
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Figure 2.2 db4 wavelet

3 Non-stationary long memory parameter estimate

We find that there are a lot of literature reseascbn smooth time series model, however,in theabefplication,
time series in general are not smooth, such am#@n value function of time sequence or varianoetfons which
are time-varying, or other covariance function fiaction of time.So many researchers stabilizeniwe-stationary
time series with some simple smooth transforms, deample, difference disposal is applied to timeese
subtracting a polynomial trend or a trigonometriadtion trend, et al.But not all of the non-statipntime series
can be stabilized by transform or in some casestabilized the original data no longer has any real
meaning.Therefore, it is very meaningful to study hon-stationary time series model.

In general, non-stationary long memory model isid#id into two types: One is that assuming long mgmo
parameter is a constant but it is beyond the sobptationary, that is [, this kind of constant non-stationary long
memory parameter estimate is usually estimatedhéyestimate method based on Whittle method. Andtimet is

to assume that long memory parameter d is a fumali) about time t and -1/2<d(t)<1/2, for this ¢ypf the
parameters, the study is based on the applicafiavagelet transform theory.In the telecommunicatioetwork,
physical signal, seismic survey, and economic amzhtial aspects, time series has often the chaisiit of time
varying longer memory,so it is not reasonable ke tang memory parameter as constant.In order taimkhe long
memory characteristic of data, in this paper, tle\sis focused on the non-stationary long memoogeh of the
time-varying parameter.

We will create a couple of estimators of time vagylong memory parameter d(t), and gives the sjggmibcedures
and the consistency identification of these estmsatof these estimation methods on the basis ofeleav
transform.In the application of the theory of watdransform to estimate non-stationary long menpamameters,
we find that the selection of wavelet scale hadiiifigence on the estimate precision, so we stuggraes of sample
behaviors in order to provide the best selectiowafelet scales.

This paper proposes the following algorithm toraeste the local self-similar parameter H(t):

1) The maximum overlap discrete wavelet transf@msied to , we get a series of wavelet coefficiemisere
2) The sample space [0, 1) is divided into nonrayping and equilong range, where, | is determibgdhe
length of the sample data.The intervals are
,h=0, 1,,.
3) Choosing an appropriate , makes is the largeate in the estimate process, which means thaeletav
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coefficient conforming to is applied to estim#te self-similar parameter H(t).
4) We splits wavelet coefficient () into partsdan turn each wavelet coefficient is correspondmthe interval .
5) In any child range, we consider binary data set

In each child range , we obtain local estimate pheameter H(t) with the ordinary least-squarese®gjon.As a
result, we get local estimates of the self-simplarameter.

6) In order to avoid boundary effect, we removelibeginning and the end of the local estimates.kir(t index is
corresponding to the midpoint of each child rangeaf is ,and using locally weighted regressioritecamoothing
smoothes these local estimation points.Then, we thet smooth curve of approximate self-similar
parameters.According to the Cavanaugh' pfoafe can also get the consistency of new estimalfor and . But
the limitation of the method is that sample sizesthe expressed in a binary number.

This paper studies local finite sample behaviorself-similar process with simulation test, and tired search
method is used to provide recommendations for 8etethese two quantities.In addition, with the afddeviation
and root mean square error, we compare the twoadsth

Table 1 The selection of optimal | and J according to different typesof H (t) and different sample size and the root mean square error

Sample Size
H(t) Method
Method 1 | 1=4,J=7| |=4,3=6] 1=4,J=17 1=4,J=B 1=6,J59 1=69J
Constant 0.1763 0.1651 0.1115 0.0797 0.0659 0.06p2
Method 2 | 1=4,J=7 | 1=4,J=6] I=5,J= |=7,J=f |=7,338 |=47Jf
0.1732 0.1556 0.1254  0.00945 0.07%4 0.0581
Method 1 | 1=4,J3=7| 1=4,3=6] 1=4,J=1 |=4,J=B [=4,J39 =49
Linear 0.2016 0.1864 0.1433 0.114y 0.0920 0.0983
Method 2 | 1=4,J=7| 1=5,J=6] 1=4,J=4 1=4,J=p 1=6,J35 [|=66JF
0.1716 0.1450 0.1629 0.1198 0.0887 0.06P8
Method 1 | 1=4,J3=7| 1=4,J3=6] 1=4,J=1 |=4,J=B [=4,J39 =49
Logarithmic 0.2027 0.2069 0.1572 0.1252 0.1001 0.1045
Method 2 | 1=4,J=7| |=4,J=6] 1=4J=4 1=4,J=p |=4,336 I=56Jf¢
0.1782 0.1704 0.1818 0.1319 0.1057 0.0859
Method 1 | 1=4,J=7| |=4,3=6] 1=4,J=17 1=4,J=p [1=4,359 1=49J
Exponential 0.1941 0.0828 0.1367 0.122% 0.0844 0.08p8
Method 2 | 1=4,J=5| |=4,J=6] 1=4,J=4 |=4,J=p [1=4,335 |=46J
0.1738 0.1374 0.1538 0.1158 0.0844 0.0648

From table 1, in most cases, the sample rangebwilivided into  (I=4) child ranges,whichis theioml choice of
making estimation error minimum.At the same timealsd notice that ensuring the minimum error oineste do
not need all wavelet coefficients of wavelet scategarticipate in the regression calculation.lct f# the number of
non-overlapping equilong child ranges is determjrdabosing the number of different wavelet scales dbvious
effects to the accuracy of estimate results.Thg spécial case is that the sample size is , wighniw estimation
method proposed in this paper or the estimatiorhateproposed by Cavanaugh, for the majority of damgnges
equally split, we always choose all of wavelet fio&fnts corresponding to wavelet scale to paréitgpin the
regression in order to achieve the best effectstihates.It also illustrates the research on th&t belection of
wavelet scales under different sample sizes is mghu.

CONCLUSION

This paper analyzes deeply the previous paramsti#naion methods,points out the advantages anithtions of
these estimate methods in the application, andiegtudow to apply these methods improve the accuddcy
estimates.What’'s more, this paper puts forwardva estimation method of time varying long memorygraeter. At
the same time, we also prove the consistency amdgstic property of the estimators obtained byrtkes method.
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