Journal of Chemical and Pharmaceutical Research, 2014, 6(6):271-275

Research Article

ISSN: 0975-7384 CODEN(USA): JCPRC5

Multiple regression research on sports and economical structure relationship

Chao Wan

Department of Physical Education, Xi'an University of Finance and Economics, Xi'an, China

ABSTRACT

The paper makes research on sports industry development and economic indicators state relations, by reasonable defining sports and national economic indicators, adopts multiple regression mathematical method, researches overall sports industry and economic multiple relations, and researches on sports industry structure optimized development and economic ways. By establishing sports industry and economic multiple regression mathematical equation, it gets conclusion that increase per capita GDP and tertiary industry employees can impel sports industry development to the greatest extent.

Key words: sports industry, multiple regressions, SPSS, sports economy

INTRODUCTION

Economy continuous development surely will drive sports industry forming and development. Similarly, sports development will also impel economic growth in turn, but which factors in economy can better impel sports industry development? The problem solution involves how to design scientific reasonable sports industrial policies, highlights key points' development and reduces blind investment, and rapidly impels sports industry development that has important practical significance.

By references, it applies multiple linear regression mathematical models to further research on sports industry and economic relation. Calculate multiple equation, as well as relational degree matrix analysis, sports industry important effects on economic development. By economic indicators coefficient sizes, it judges best economic factor that impels sports industry.

2 Economy to sports industry mathematical regression model

Sports industry development status indicators factors are quite a lot, the paper selects most typical three factors that are respectively sports industry product, sports consumption, sports industrial staff amount. These three factors basically can on behalf of Chinese sports industrial development form level that are defined as sports industry three sub factors, as Table 1.

Table 1: Economy, sports indicators

Indicator	Sub factor				
	Sports industry product				
Sports industry	Sports consumption				
	Sports industrial staff amount				
	Gross domestic product				
	The tertiary industry product Per capita GDP				
Economic					
development	Per capita consumption				
development	expenditures				
	Per capita disposable income				
	The tertiary industry staff amount				

2.1 Indicator data collecting and processing

Per capita GDP

Sports industry and economic development factor data from year 1997 to 2007 is as following Table 2.

Year 1997 1998 1999 2000 2001 2002 y₁ 157.95 168.8 179.35 198.43 219.31 240.67 Sports product y₂ 2562.12 2687.96 2818.2 Sports consumption 3129.72 3250.28 493.04 193.25 Sports employees amount y_3 471 488.09 GDP X_1 78973.0384402.2889677.0599214.55109655.2120332.7 The tertiary industry product χ_2 26988.1530580.4733873.4438713.9544361.61 49898.9

 χ_3 6420.18 6796.03 7158.5 7857.68 8621.71 9398.05

Table 2: Each factor previous data

Per capita consumption	X_4	5832	6109	6405	6850	7113	7387
Per capita disposable income	X_5	5160.3	5425.1	5854.02	6280	6859.6	7702.8
The tertiary industry employees amount	$t x_6$	18432	18860	19205	19823	20228	21090
	Year	2003	2004	2005	2006	2007	
Sports product	y_1	271.65	319.76	366.43	423.847	199.06	
Sports consumption	y_2	3476.44	3818.76	4140.4	4586.12	5216.2	
Sports employees	y_3	493.15	493.2	493.17	493.18	493.18	
GDP	x_1	135822.8	159878.3	183217.4	211923.5	249529.9	
The tertiary industry	x_2	56004.73	64561.29	73432.87	84721.4	100053.5	
Per capita GDP	x_3	10541.97	12335.58	14053	16165	18934	
Per capita consumption	X_4	7901	8679	9410	10423	11855	
Per capita income	x_5	8472.2	9421.6	10493	11759.5	13785.8	
The tertiary industry employee	x_6	21809	23011	23771	24614	24917	

During year 1997 to 2007, sports and economic correlation factors indicators original data has different dimensions, it needs to carry out dimensionless handling with data to eliminate different dimensions impacts, let model reliability to be higher, here adopts initial value transformation:

$$f(x(k)) = \frac{x(k)}{x(1)} = y(k), k = 1, 2, \dots n$$
and $x(1) \neq 0$

That is f initialized transformation. Take initialized transformation on matrix A, adopt matrix form transformation. In A, line respectively represents sports and economic relative indicators data. Define transformation matrix C: The matrix that lets original data matrix A to be transformed into initial value matrix D is called transformation matrix. Relationship is:

$$C \bullet A = D$$

Matrix C general form is:

$$\mathbf{C} = \begin{pmatrix} 1/a_{11} & 0 & \cdots & 0 \\ 0 & 1/a_{21} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1/a_{n1} \end{pmatrix}$$

Sports industry size is up to three indicators, to better regress economic factors, use weighted method to carry out dimensionless handling with sports industry factor indicators. Assume sports industry three indicators factors

weights are:

$$w = \begin{pmatrix} w_1 & w_2 & w_3 \end{pmatrix}$$
$$w_1 + w_2 + w_3 = 1$$

Take w

$$w = (0.4 \quad 0.3 \quad 0.3)$$

Among them, w represents each indicator weight in comprehensive evaluation sports industry, sports industry evaluation's sports product, sports consumption, sports employees data should be the data after initialized processing, otherwise it cannot calculate. Then sports industry comprehensive evaluation is:

$$Y = w_1 y_1 + w_2 y_2 + w_3 y_3$$

After handling with sports three indicators data, it gets dimensionless data, as following Table 3:

Table 3: Sports indicator data dimensionless processing

	Year19971998199920002001200
Sports product	y ₁ 1.00 1.07 1.14 1.26 1.39 1.52
Sports consumption	n y ₂ 1.00 1.05 1.10 1.18 1.22 1.27
Sports employees	y ₃ 1.00 1.01 1.02 1.04 1.05 0.4
	Year20032004200520062007
Sports product	Year20032004200520062007 y ₁ 1.72 2.02 2.32 2.68 1.26
1 1	

After taking dimensionality reduction with sports indicators data as well as handling with economic indicators data, it gets data as following Table 4:

Table 4: Dimensionality reduction and initialize data

	Year	1997	1998	1999	2000	2001	2002
Sports product	Y	2.00	2.09	2.17	2.32	2.47	2.43
GDP	x_1	1.00	1.07	1.14	1.26	1.39	1.52
The tertiary industry product	x_2	1.00	1.13	1.26	1.43	1.64	1.85
Per capita GDP	x_3	1.00	1.06	1.11	1.22	1.34	1.46
Per consumption	\mathcal{X}_4	1.00	1.05	1.10	1.17	1.22	1.27
Per capita disposable income	x_5	1.00	1.05	1.13	1.22	1.33	1.49
The tertiary industry employees amount	x_6	1.00	1.02	1.04	1.08	1.10	1.14
	Year	2003	2004	2005	2006	2007	
Sports product	Year Y	2003 2.84	2004 3.19	2005 3.52	2006 3.93	2007 2.59	
Sports product GDP							
1 1	Y	2.84	3.19	3.52	3.93	2.59	
GDP	Y x_1	2.84	3.19 2.02	3.52 2.32	3.93 2.68	2.59 3.16	
GDP The tertiary industry	Y x_1 x_2	2.84 1.72 2.08	3.19 2.02 2.39	3.52 2.32 2.72	3.93 2.68 3.14	2.59 3.16 3.71	
GDP The tertiary industry Per capita GDP	Y x_1 x_2 x_3	2.84 1.72 2.08 1.64	3.19 2.02 2.39 1.92	3.52 2.32 2.72 2.19	3.93 2.68 3.14 2.52	2.59 3.16 3.71 2.95	

2.2 Multiple regression model establishment

Adopt SPSS to make multiple regressions modeling, multiple linear equation, two predicted equation forms are respectively as following:

$$Y = \sum_{i=1}^{6} a_i x_i + C$$

Among them, Y respectively represents sports industry comprehensive value that represented by economic indicators, X_i represents economic indicators data. C Represents constant.

Firstly introduce data into SPSS, make multiple regression, establish multiple linear regression equation, apply software SPSS, it can get as following Table 5:

Alter statistical quantity Model R R square Adjust R square Standard estimated error Durbin-Watson Sig. F df1 df2 square alter Alter alter .919 23.699 5 5 .002 3.004 .980 .960 .17722 .960 a. Predictive variable: (constant), x6, x4, x5, x3, x2

Dependent variable: Y

Table 5: Model summary^b

Regression equation significance test is as following Table 6.

Table 6: Test

Anova^b

Anova ^b								
N	Iodel	Sum of squares	df	Mean square	F	Sig.		
1	Regression	3.722	5	.744	23.699	.002ª		
	Residual	.157	5	.031				
	Total	3.879	10					
a.	a. Predictive variable: (constant), x6, x4, x5, x3, x2 °							
b	b. Dependent variable: Y							

By above calculation, it can get multiple regression linear equations as:

$$Y = 2.195x_2 + 4.768x_3 - 4.453x_4 - 8.945x_5 + 14.238x_6 - 5.834$$
 (3)

Regression value test, standardized residual conforms to following figure, it gets closer to normal distribution, which shows predicted value residual distribution is reasonable, model accuracy is good. Test histogram Figure 1:

Figure 1: Standardized residual distribution

2.3 Error test

Make comparison between actual sports comprehensive level value and regression equation calculation value as well as its error value as following Table 7.

Table 7: Actual value and predicted value comparison

Actual value	Regression value	Error
2.00	1.96925	0.015
2.09	2.20450	0.055
2.17	2.04031	0.060
2.32	2.33749	0.008
2.47	2.47690	0.003
2.43	2.49677	0.027
2.84	2.67222	0.059
3.19	3.38573	0.061
3.52	3.57111	0.015
3.94	3.72728	0.054
2.59	2.66045	0.027
Error av	verage value	0.035

CONCLUSION

The paper takes sports industry comprehensive level as dependent variable to establish economic relative indicators that is variable multiple regression models. Model calculation result well conforms to error test. And from regression equation variable coefficients, it gets that increase the tertiary industry employees can better impel sports industrial development. It needs each department to increase investment on the tertiary industry, add construction of the tertiary industry economic chain, let more people participate so that better impel sports industry overall rapidly development.

REFERENCES

- [1] LIU Bao, HU Shan-lian, XU Hai-xia, GAO Jian-hui. Chinese Journal of Health Policy, 2009, 2(6):13-17.
- [2] ZHANG Da-chao, LI Min. China Sport Science, 2013, 33(4):3-23.
- [3] CAI Jing-tai, FAN Bing-you, WANG Ji-shuai. Journal of Beijing Sport University, 2009(6).
- [4] Wang Guo-hong, Zhang Wen-hui. Journal of Chengdu Physical Education Institute, 2010, 36(2).
- [5] ZHANG Jie, WU Ying. Journal of Shanghai Physical Education Institute, 2012(6):80-82.
- [6] HE Ying, XU Ming. Journal of Chengdu Physical Education Institute, 2007, 33(2):43-45.
- [7] HE Ying, XU Ming. Journal of Wuhan Institute of Physical Education, 2007, 41(11):40-42.
- [8] CHEN Yang, MA Ge-sheng. China Sport Science and Technology, 2009, 45(4).
- [9] HE Ying, XU Ming. Journal of Wuhan Institute of Physical Education, 2007, 41(11):40-42.