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ABSTRACT 
 
Tangent space alignment is efficient in machine learning. This is about mapping several datasets into a global space, 
and is of great importance in learning the shared latent structure, data fusion and multicue data matching. In this 
paper, we propose an improved tangent space algorithm to solve medical DR image alignment problem. This 
algorithm builds the inner linear manifold constraint in Medical DR image. A cost function to measure the quality of 
alignment is given by combining the inner manifold constraints of each dataset and the matching points constraints 
among different datasets. The effectiveness of our algorithm is validated by applying it to the medical DR image 
alignment. 
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INTRODUCTION 
 

Digital radiography (DR) has advantages, such as high resolution ratio, wide dynamic range, fast speed of imaging 
and low-radiation to human body. It uses a flat plate detector to accept the X-ray and obtains the digital image signal 
directly. It has been the most advanced medical imaging method in the X-ray imaging field, and more and more 
widely used in the clinical diagnosis and the scientific research. Recently, manifold alignment methods have 
attracted much attention in computer and pattern recognition. This question arises when one needs to find common 
structure or establishs a correspondence between two data sets resulting from the same fundamental source. For 
instance, consider the problem of matching pixels of a stereo image pair. One can form a graph for each image, 
where pixels constitute the nodes and where edges are weighted according to the local features in the image. The 
problem now boils down to matching nodes between two manifolds. Note that this situation is an instance of 
multisensor integration problem, in which one needs to find the correspondence between data captured by different 
sensors. In some applications, like fraud detection, synchronizing data sets is used for detecting discrepancies rather 
than similarities between data sets. There has been a body of work related to graph-based manifold alignment. Bai et 
al.[5] presents that the ISOMAP algorithm is used to embed the nodes of the graphs corresponding to the aligned 
data sets, in a low-dimensional Euclidean space. The nodes are thus transformed into points in a metric space, and 
the graph-matching is recast as the alignment of point sets. A variant of the Scott and Longuet-Higgins algorithm is 
then used to find point correspondences. Ham et al.[1] align the manifolds by giving a set of a priori corresponding 
nodes or landmarks. A constrained formulation of the graph Laplacian based embeddings is derived by including the 
given alignment information. First, they add a term fixing the embedding coordinates of certain samples to 
predefined values. Both sets are then embedded separately, where certain samples in each set are mapped to the 
same embedding coordinates. Second, they describe a dual embedding scheme, where the constrained embeddings 
of both sets are computed simultaneously, and the embeddings of certain points in both data sets are constrained to 
be identical. Gori et al.[6] align weighted and unweighted graphs by computing a “signature” for each node that is 
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based on repeated use of the invariant measure of different Markov chains defined on the data. The nodes/samples 
are then matched in two ways: First, in a one-by-one basis, where nodes with similar signatures are coupled. 
Second,in a globally optimal approach using a bipartite graph matching scheme. An approach to Many-to-Many 
alignment was presented in[7] by Keselman et al. They aim to match corresponding clusters of nodes in both data 
sets, rather then match individual nodes. The data sets are embedded in a metric space using the Matousek 
embedding and sets of nodes are then aligned using the Earth Mover’s Distance, which is a distribution-based 
similarity measure for sets. In the data alignment segment of our work, we resolve the alignment of data sets with a 
common low-dimensional manifold, but different densities, by incorporating the use of the density-invariant 
embedding. 
 
Manifold constraint of a single dataset  
The basic idea of LTSA is to construct local linear approximations of the manifold in the form of a collection of 
overlapping approximate tangent spaces at each sample point，and then align those tangent spaces to obtain a global 
parametrization of the manifold. Details and derivation of the algorithm can be found in [4]. Given a data set 

[ ]1, , NX x x= K  with m
ix R∈ ， sampled (possibly with noise) from a d-dimensional manifold 

( d m<< ), ( )i i ix f τ ε= + ，where : d mf R RΩ ⊂ → ，Ω  is an open connected subset，and iε  represents 

noise. LTSA assumes that d is known and proceeds in the following steps. 
 

(1) Local neighborhood construction. For each ix ， 1, ,i N= K ，determine a set 
1

[ , , ]
ki i iX x x= K  of its 

neighbors (k nearest neighbors，for example). 
 

(2) Local linear fitting. Compute the optimal rank-d approximation to the centered matrix ( )T
i iX x e− ，where 

1

1
j

k

i ij
x x

k =
= ∑ ， and e  is a k-dimensional row vector of all 1’s. By the SVD of T

i iX x e− ，

T dX xe Q V− = ∑ , if 1( , , )d ddiag σ σ∑ = K  with the d  largest singular value of T
i iX x e− , dQ  and 

dV  are the matrices of correlating left and right singular vectors, respectively . we can obtain the orthonormal basis 

iQ  for the d-dimensional tangent space of the manifold at ix ， and the orthogonal projection of each 
jix  in its 

neighborhood to the computed tangent space ( ) ( )
j

i T
j i i iQ x xθ = − . 

 

(3) Local coordinates alignment. Align the N local projections ( ) ( )
1 , ,i i

i kθ θ Θ =  K ， 1, ,i N= K ，to obtain the 

global coordinates Denote 1, , Nτ τK , and 
1

[ , , ]
ki i iT τ τ= K  which consists of a subset of the columns of T with 

the index set { }, ,i ki iK  determined by the neighbors of each ix . Let T
i i i i iE T c e L= − − Θ  be the local 

reconstruction error matrix, where 
1

i ic T e
k

=  and 
1

( )T
i i i i iL T I ee T

k
+ += − Θ = Θ , where i

+Θ  is the 

Moor-Penrose generalized inverse of and e is a vector of all ones. 
 

i i iE TS W=  (1) 

 

Where iS  is the 0-1 selection matrix such that i iTS T=  and 
1

( )( )T
i iW I ee I

k
+ += − − Θ Θ .Then the single 

data set manifold alignment of LTSA is achieved by minimizing the following global reconstruction error: 
 

22 2
( ) i i i F F

i i

E T E TS W TSW= ≡ =∑ ∑
)

 (2) 
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Where [ ]1, , NS S S= K  and 1( , , )NW diag W W=
)

K  

 

Both the approximation vector iw and the approximation matrix iw  are distilled from the high-dimensional data 

X . There are several methods to determine the approximation coefficients listed in Table 1. Local learning 

regularization and LLE[6] are two ways to determine the approximation vector iw for the point mode. LTSA[7] 

offers us a method to determine the approximation matrix iw  for the block mode. Here iθ is the mapping of 

i
X Γ in the local tangent space, iθ + is the Moor-Penrose generalized inverse of iθ , and i i iW θ θ+= acts like a 

correlation matrix of the points around ix  

 
Medical DR Image Alignment Based Improved Tangent Space 

Let iΓ  be a vector of indices of points in the ( 1)k − -neighbor of ix , and i
i

i 
Γ =  Γ 

is a vector including i and 

iΓ . iS  is a 0-1 selection matrix satisfying 
iiXS XΓ= . Similarly in the low-dimensional space, we have

iiYS YΓ= . 

Lete be the vector of all 1’s, kI  be the identify matrix with rank k . Then, 
1

( )TJ I ee
k

= − is the mean 

removal operator. We can get the local coordinate of the high-dimensional data
i i

X X JΓ Γ= , and its counterpart in 

low-dimension 
i i

Y Y JΓ Γ= . The approximation of a point is defined as 
i i iY w YΓ → , where iw is the local 

approximation vector extracted from X . 

The block approximation is defined as 
i iiY W YΓ Γ→ ,where iW is the local approximation extracted from points 

around ix .The block approximation error around iy is defined as ( )
2 2

i ibi i i k i FF
err Y Y W YS J I WΓ Γ= − = − . 

The summation of the approximation error of all local blocks is 
 

( ) 2 2

1 1

n n

b bi i k i b b FF
i i

err err YS J I W YS B
= =

= = − =∑ ∑
 

(3) 

where [ ]1, ,b nS S S= L , ( ) ( ){ }1 , ,b k k nB diag J I W J I W= − −L . 

  
Learning with the label value can be regarded[8] as the problem of approximating a multivariate function from 
labeled data points. The function can be real valued as in regression or binary valued as in classification. Learning 
with the label value can also be regarded as a special case of dimension reduction that maps all the data points into 

the label value space. The label error of iy is defined as 
2

li i i ierr s y f= − , where is  is the flag to identify the 

labeled points satisfying
1

0i

i L
s

i L

∈
=  ∉

L

L
, L is the collection of indices of labeled points, and 

[ ]1, , nF f f= L is the given label value. The loss function ( )pErr Y  defined on weighted combination of point 

approximation error and label error and its optimal solution *Y are shown in (4). 
 

( )( ) ( ) ( )2 22 2

1

1
n

p i pi i li p n FF
i

Err a err a err YB I A Y F A
=

= − + = − + −∑
,

( ) 1* T T
pY FAA M AA

−
= +

 

(4) 
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where ( ) 1* T T
pY FAA M AA

−
= + , 0 0( (1 ) )i i

l
a a a s

n
= − + is the weight coefficient at iy , l  is the number 

of labeled points, 0a  is the minimal weight coefficient set by user, and ( )iA diag a= . Here, the setting of the 

weight coefficient ia  is based on the following two assumptions that: if the proportion of the labeled points 

decreases, we have to reduce our dependence on the knowledge only retained from the labeled points; if all the 
points are labeled, we must totally discard the geometric knowledge of the point clouds, for the label information is 
more reliable and the geometric knowledge is completely useless at that moment.  
 
Similarly, the total error defined for block approximation and its optimal solution are 
 

( )( ) ( ) ( )2 22 2

1

1
n

b i bi i li b b K b F F
i

Err a err a err YS B I A Y F A
=

= − + = − + −∑
, 

optimal ( ) 1* T T
bY FAA M AA

−
= +  

(5) 

 

Here, ( )( )T T T
b b b K b K b b bM S B I A I A B S= − − , K k n= × , { }1 , ,b k n kA diag a I a I= L is a sparse weight 

matrix. We take 0 1
i

i L

y y
n l ∉

=
− ∑ as the decision threshold for classification.. 

 
Medical DR Image Alignment computation issues 
The drawback of the algorithm presented before is that it involves the operations of large sparse matrix. Some 
methods are presented here to reduce the complexity of the computation. The manifold constraint matrix M  of 
each dataset can be computed by  
 

( , ) ( , )i i i i iM M WΓ Γ ← Γ Γ + , 1, ,i n= L  (6) 

  

with initial 0n nM ×=  [4]. Let jΓ% denote the vector of indices of jT  in the global coordinates T% , jn  denote 

the number of points in dataset jT , and n%  be the number of points in T% . Let 
1

m

c j
j

n n
=

=∑%  denote the number of 

equation constraints of all datasets. By aligning the equation constraints in each dataset, we can get the total 
manifold constraint matrix.  
 

( , )j cj jM MΓ Γ =% % %

, 1, ,j m= L  (7) 

  

with initial 0
cn nM ×=

% %

% . Here, 
1

1 1

1
Tj j

cj k k
k k

n n
−

= =

 Γ = + 
 
∑ ∑% L  is the index of the manifold constraints of jY  

in the total constraints. The total manifold constraint matrix can be computed by 
 

TB MM=% % %  (8) 

 
Experiments and discussion 
We validate the effectiveness of our algorithms by solving the problem of image sequence alignment. The images of 
two objects in COIL20 are shown in Figure 1. The images of the objects were taken at pos intervals of 5 degrees. 
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The embedded manifolds before aligned are shown in Figure 2, and the embedded manifolds after aligned are shown 
in Figure 3. The matching points for aligning the manifold of different image sequences are marked as large dots by 
different colors(red, white, black). We can see that our algorithms can align the embedded manifolds properly with 
the knowledge extracted from the matching points and the relationship among points of each image sequence. 
 
 

          
(a)obj1                          (b)obj2 

 
Figure 1. Images of Two Objects in COIL20 

 

             
(a)obj1                                        (b)obj2 

 
Figure 2 Embedded Manifolds Before Aligned 

 

        
(a)obj1                              (b)obj2 

 
Figure 3. Embedded Manifolds After Aligned 

 
We also select two image sequences for experiments from the FacePix database[8][9]. The image sequences 
corresponding to the profile view of the object taken with the camera placed at 90 degrees from the frontal are 
shown in Figure 4. The embedded manifolds before aligned are shown in Figure 5, and the embedded manifolds 
after aligned are shown in Figure 6.  
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(a) Original image 1           (b) Enhanced image 1 
 

 
 

(c)  Original image 2          (d) Enhanced image 2 
 

 
 

(e) Original image 3         (f) Enhanced image 3 
 

Figure 4.  Enhancement contrast of DR image 
 

CONCLUSION 
 

In this work, we introduced improved tangent space algorithm to solve medical DR image alignment problem. Our 
algorithm does not need  the same guarantees of global optimality or convergence, it also does not involve many 
more free parameters, such as learning rates, convergence criteria, or architectural specifications. The experiment 
result of aligning image sequences validates the effectiveness of our algorithm. 
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