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ABSTRACT

Tangent space alignment is efficient in machine learning. Thisis about mapping several datasetsinto a global space,
and is of great importance in learning the shared latent structure, data fusion and multicue data matching. In this
paper, we propose an improved tangent space algorithm to solve medical DR image alignment problem. This
algorithm builds theinner linear manifold constraint in Medical DR image. A cost function to measure the quality of
alignment is given by combining the inner manifold constraints of each dataset and the matching points constraints
among different datasets. The effectiveness of our algorithm is validated by applying it to the medical DR image
alignment.
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INTRODUCTION

Digital radiography (DR) has advantages, such gk hésolution ratio, wide dynamic range, fast spefeishaging
and low-radiation to human body. It uses a flatepldetector to accept the X-ray and obtains thiéadlignage signal
directly. It has been the most advanced medicagingamethod in the X-ray imaging field, and mored anore
widely used in the clinical diagnosis and the diifienresearch. Recently, manifold alignment methdthve
attracted much attention in computer and pattecngmition. This question arises when one needstbdommon
structure or establishs a correspondence betweerdata sets resulting from the same fundamentakcsotror
instance, consider the problem of matching pixéls stereo image pair. One can form a graph foh éaage,
where pixels constitute the nodes and where edgew@ighted according to the local features inithage. The
problem now boils down to matching nodes betweea taanifolds. Note that this situation is an instarof
multisensor integration problem, in which one netedBnd the correspondence between data capturetifferent
sensors. In some applications, like fraud detecsgnchronizing data sets is used for detectingrelgncies rather
than similarities between data sets. There has ddwmuy of work related to graph-based manifolgratient. Bai et
al.[5] presents that the ISOMAP algorithm is usedibed the nodes of the graphs correspondingetalipned
data sets, in a low-dimensional Euclidean space.iddes are thus transformed into points in a mepace, and
the graph-matching is recast as the alignment ot gets. A variant of the Scott and Longuet-Higgatgorithm is
then used to find point correspondences. Ham [@f] align the manifolds by giving a set of a pricorresponding
nodes or landmarks. A constrained formulation efghaph Laplacian based embeddings is deriveddbiydimg the
given alignment information. First, they add a tefixing the embedding coordinates of certain saspie
predefined values. Both sets are then embeddedatelya where certain samples in each set are noafpp¢he
same embedding coordinates. Second, they descdbeleembedding scheme, where the constrained etimged
of both sets are computed simultaneously, and riifgeddings of certain points in both data sets anstcained to
be identical. Gori et al.[6] align weighted and wighted graphs by computing a “signature” for eacte that is
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based on repeated use of the invariant measurdéfefetit Markov chains defined on the data. Theaséshmples
are then matched in two ways: First, in a one-by-basis, where nodes with similar signatures argled.
Second,in a globally optimal approach using a biggagraph matching scheme. An approach to Manytamy
alignment was presented in[7] by Keselman et aéyTédim to match corresponding clusters of nodesoth data
sets, rather then match individual nodes. The data are embedded in a metric space using the B&ktou
embedding and sets of nodes are then aligned ubandzarth Mover’'s Distance, which is a distributimesed
similarity measure for sets. In the data alignnssgment of our work, we resolve the alignment ¢& d@ts with a
common low-dimensional manifold, but different diéies, by incorporating the use of the density-nisat
embedding.

Manifold constraint of a single dataset

The basic idea of LTSA is to construct local lineaproximations of the manifold in the form of dlection of
overlapping approximate tangent spaces at eachlsgrmomt and then align those tangent spaces to obtainbalglo
parametrization of the manifold. Details and dditva of the algorithm can be found in [4]. Givendata set

X:[Xl,...,XN] with  x OR™ , sampled (possibly with noise) from a d-dimensionaianifold

(d<<m),x =f(r)+&, where f:QOR’ - R, Q isan open connected subseind & represents

1 1
noise. LTSA assumes that d is known and proceetteifollowing steps.

(1) Local neighborhood construction. For eaxh, i=1,...,N, determine a setX, =[)§1,...,)§k] of its

neighbors (k nearest neighborfor example).

(2) Local linear fitting. Compute the optimal radkapproximation to the centered matr(>b(i —XeT) , where
o 1« . . : : val
X —Ezjzl)gj » and € is a k-dimensional row vector of all 1's. By theV3 of X, —Xe ,

X-x%e' =QXV‘, if X, =dag(g,,...,0,) with the d largest singular value ofX; —=X€', Q, and

V? are the matrices of correlating left and righgsilar vectors, respectively . we can obtain thharbrmal basis
Q for the d-dimensional tangent space of the maahiédl X , and the orthogonal projection of each in its
J

neighborhood to the computed tangent spﬁ% =Q' ()gj -X).

(3) Local coordinates alignment. Align the N lopabjections ©, = [Hl(i),... ,Héi)} , i=1,...,N, to obtain the
global coordinates Denot¢,,..., T, , and T, = [Til,..., Tik] which consists of a subset of the columns of Thwit

the index set{ii,...,ik} determined by the neighbors of each. Let E =T —ce' —L©®, be the local

1 1 . . .
reconstruction error matrix, whereg, :ETie and L =Tl _EeeT)@i =T, , where O is the

Moor-Penrose generalized inverse of and e is avettall ones.

E =TSW (1)

1
Where S is the 0-1 selection matrix such thdi§ =T, and W = (I —=ee")(1 —©;0") .Then the single
k

data set manifold alignment of LTSA is achievedtigimizing the following global reconstruction erro

EM =Y[E[ = X frsw: =[rsw; @
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Where S=[S_,...,SN] and W = diag(W,,...,W,)

Both the approximation vectow, and the approximation matrix are distilled from the high-dimensional data
X . There are several methods to determine the appation coefficients listed in Table 1. Local leig
regularization and LLE[6] are two ways to determthe approximation vectow for the point mode. LTSA[7]

offers us a method to determine the approximatiatrim W for the block mode. Hereﬂ is the mapping of

V2 +

X in the local tangent space]"is the Moor-Penrose generalized inverse &f and W =878 acts like a

correlation matrix of the points arouni,

Medical DR Image Alignment Based | mproved Tangent Space

_ i )
Let I'; be a vector of indices of points in thk —1) -neighbor of X, andl"; = [I’ }is a vector includingl and

;.S is a0-1 selection matrix satisfyingK§ = X . Similarly in the low-dimensional space, we h¥& = Y- .
1
Let€be the vector of alll’s, |, be the identify matrix with rankk. Then, J =(I —EeeT)is the mean

removal operator. We can get the local coordin&tbehigh-dimensional dat)zrv = XF J , and its counterpart in

low-dimension Vr =Y: J. The approximation of a point is defined %.Wi - ?. where W is the local

approximation vector extracted fronX .
The block approximation is defined a\§;V\{ - Yr_ ,.where Wis the local approximation extracted from points

W =[vsa (1, -w)[.

around X .The block approximation error arouny,is defined aserr :HV

-l

The summation of the approximation error of alldblalocks is

e, =Y e, =Y V3 (1 -W); =SB ®
where S, =[S+, S,]. B, =diag{J (I, -W),-, 3 (1, -W,)}.

Learning with the label value can be regarded[8}rees problem of approximating a multivariate funatifrom
labeled data points. The function can be real vhhgin regression or binary valued as in clasgifia. Learning
with the label value can also be regarded as aapmxse of dimension reduction that maps all thi ghoints into

the label value space. The label error @fis defined aserr, =5 ||y| - f ||2 where § is the flag to identify the
1 - i0dL
0 - i0L’

F =[ fl,, fn] is the given label value. The loss functidarr, (Y) defined on weighted combination of point

labeled points satisfying ={ L is the collection of indices of labeled points, and

approximation error and label error and its optis@ution Y are shown in (4).

err, = 30 ((1-a)" e +a’ern ) =18, (1, A +|(Y=F) A .

Y =FAAT (M, +AAT)"
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* -1 I
where Y' = FAA (M ot AAT) a = (E (1-a%)+a%)sis the weight coefficient aty,, | is the number

of labeled points,a° is the minimal weight coefficient set by user, #he diag(a) . Here, the setting of the

weight coefficient & is based on the following two assumptions thatthé proportion of the labeled points

decreases, we have to reduce our dependence dmdidedge only retained from the labeled pointsalifthe
points are labeled, we must totally discard thengetoic knowledge of the point clouds, for the lalpébrmation is
more reliable and the geometric knowledge is cotaplaiseless at that moment.

Similarly, the total error defined for block appimation and its optimal solution are

i=1

err, =) ((1-a) e, +a’er,) = [¥S 8, (1 - A)f +|(Y-F) Al .
optimalY” = FAA' (Mb + AAT )_1

Here, Mb=SOE">D(IK—A))(IK—A))T B'S'. K=kxn, A =diag{al,.-,a,l,}is a sparse weight

1
matrix. We take y° = —Z Y, as the decision threshold for classification..
—hioc

Medical DR Image Alignment computation issues

The drawback of the algorithm presented beforehdd it involves the operations of large sparse ima8ome
methods are presented here to reduce the compleitye computation. The manifold constraint matfd of
each dataset can be computed by

M(FLF) = M T +wy, T ©)

with inital M =0__ [4]. Let Izj denote the vector of indices dfj in the global coordinate§|:, n denote

nxn
- m
the number of points in dataséij ,and N be the number of points il . Let A, = an denote the number of
=1

equation constraints of all datasets. By alignihg equation constraints in each dataset, we carthgetotal
manifold constraint matrix.

|\7|(|=]-,|_q-):Mj j=1:--,m @)

with initial M =0,

B j-1 i i
e, - Here, Ty ={Z n -+l -- an} is the index of the manifold constraints of
k=1 k=1

in the total constraints. The total manifold coastt matrix can be computed by

B=MM" 8)

Experiments and discussion
We validate the effectiveness of our algorithmssblying the problem of image sequence alignmenrg. ifiages of
two objects in COIL20 are shown in Figure 1. Thag®es of the objects were taken at pos intervats adgrees.
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The embedded manifolds before aligned are showigiare 2, and the embedded manifolds after aligmedshown
in Figure 3. The matching points for aligning thamifold of different image sequences are markeldrage dots by
different colors(red, white, black). We can sed tha algorithms can align the embedded manifoldperly with

the knowledge extracted from the matching pointstae relationship among points of each image ssmpie

(a)obj1 (b)obj2

Figure 1. Images of Two Objectsin COIL20
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Figure 2 Embedded Manifolds Before Aligned
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(a)obj1 (b)obj2

Figure 3. Embedded M anifolds After Aligned

We also select two image sequences for experimieats the FacePix database[8][9]. The image sequence
corresponding to the profile view of the objectamkwith the camera placed at 90 degrees from thata are
shown in Figure 4. The embedded manifolds befagnatl are shown in Figure 5, and the embedded oidsif

after aligned are shown in Figure 6.
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(a) Original image 1 (b) Enhanced image 1

(c) Original image 2 (d) Enhanced image 2

(e) Original image 3 (f) Enhanced image 3

Figure4. Enhancement contrast of DR image
CONCLUSION

In this work, we introduced improved tangent spalgerithm to solve medical DR image alignment peail Our
algorithm does not need the same guarantees bélgtptimality or convergence, it also does noblag many
more free parameters, such as learning rates, oggwvee criteria, or architectural specificationbeTexperiment
result of aligning image sequences validates tfee@feness of our algorithm.
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