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ABSTRACT 
 
In this paper, the concepts of LωH-sets and LωH-closed spaces are proposed in Lω-spaces by means of 
(αω)−-remote neighborhood family. The characterizations of LωH-sets and LωH-closed spaces are systematically 
discussed. Some important properties of LωH-closed spaces, such as the LωH-closed spaces is ω-regular closed 
hereditary, arbitrarily multiplicative and preserving invariance under almost (ω1, ω2)-continuous mappings are 
proved. 
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INTRODUCTION 
 

As we all know, H-closedness is one of the most important notions in general topology. In 1968, N. V. Velicko 
generalized the H-closedness and introduced the concept of H-sets in topological spaces [9]. In 1992, Chen 
introduced the concept of L-fuzzy H-sets in L-fuzzy topological spaces and established the theory of L-fuzzy 
H-closedness[1]. In this paper, the concepts of LωH-sets and LωH-closed spaces will be proposed in Lω-spaces[2,3]. 
The theory of LωH-closedness, which is generalization of the theory of L-fuzzy H-closedness, will be set up in 
Lω-spaces.  
 
2. PRELIMINARIES 
Throughout this paper, L denotes a fuzzy lattice, Let X and Y be nonempty crisp sets, and M denotes the set 
consisting of all nonzero ∨-irreducible elements of L. 0 and 1 denote the least and greatest elements of L respectively. 
Let LX be the set of all L-fuzzy sets (briefly, L-sets) on X and M∗(LX) the set of all nonzero ∨-irreducible elements 
(i.e., so-called molecules[10] or points for short) of LX. The least and the greatest elements of LX will be denoted by 
0X and 1X respectively. For any α∈M, β(α) is called the greatest minimal set of α[7], and β∗(α)=β(α)∩M is said to 
be the standard minimal set of α[10]. 

 
Definition 2.1.[2]  Let X be a nonempty crisp set. 
(i) An operator ω: LX 

→ LX is said to be an ω-operator if (1) for all A, B∈LX and A� B, ω(A)� ω(B); (2) for all A∈LX, 
A� ω(A). 
(ii) An L-set A∈LX is called an ω-set if ω(A)=A. 
(iii) Put Ω={A∈LX

︱A=ω(A)}, and call the pair (LX, Ω) an Lω-space. 
 
Definition 2.2.[2]  Let (LX, Ω) be an Lω-space, A∈LX and xα∈M∗(LX). If there exists a Q∈Ω such that xα� Q and 
P� Q, then call P an ω-remote neighborhood (briefly, ωR-neighborhood) of xα. The collection of all 
ωR-neighborhood of xα is denoted by ωη(xα). If A� P for each P∈ωη(xα), then xα is said to be an ω-adherence point of 
A, and the union of all ω-adherence points of A is called the ω-closure of A and denoted by ωcl(A). If A=ωcl(A), 
then call A an ω-closed set, and call A′ is an ω-open set. If P is an ω-closed set and xα� P, then P is said to be an 
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ω-closed remote neighborhood (briefly, ωCR-neighborhood) of xα, and the collection of all ωCR-neighborhoods of 
xα is denoted by ωη−(xα). Note ωC(LX) and ωO(LX) be the family of all ω-closed sets and all ω-open sets in LX 
respectively. 
 
Definition 2.3.[8]   Let (LX, Ω) be an Lω-space, N be a molecular net in LX and xα∈M∗(LX). If N is eventually not in 
ωint(P) for each P∈ωη−(xα), then xα is said to be an ωθ-limit point of N or N ωθ-converges to xα. If N is frequently 
not in ωint(P) for each P∈ωη−(xα), then xα is said to be an ωθ-cluster point of N or N ωθ-accumulates to xα. The 
union of all ωθ-limit points (ωθ-cluster points) of N is written by ωθ-limN (ωθ-adN). 

 
Definition 2.4.[8]    Let N be a α-net in A(α∈M), λ∈β∗(α), if N is frequently not in ωint(P) for each P∈ωη−(xλ), 
then xλ is said to be an ωθ-cluster point of N with hight λ. 

 
Definition 2.5.[4]   Suppose that (LX, Ω) be an Lω-space, A∈LX, α∈M and Φ⊆ωC(LX).  
(1) If there exists a P∈Φ such that P∈ωη−(xα) for each molecule xα in A, then Φ is called an αω-remote 
neighborhood family (briefly, αω-RF) of A, in symbol ∧Φ<A(αω). If there exists a nonzero ∨-irreducible element 
λ∈β∗(α) with ∧Φ<A(λω), then Φ is said to be an (αω)−-RF, in symbol ∧Φ≪A(αω). 
 
(2) If there exists a P∈Φ such that xα � ωint(P) for each molecule xα in A, then Φ is called an almost αω-remote 
neighborhood family (briefly, almost αω-RF) of A, in symbol (∧Φ)∗<A(αω). If there exists a nonzero ∨-irreducible 
element λ∈β∗(α) with (∧Φ)∗<A(λω), then Φ is said to be an almost (αω)−-RF, in symbol (∧Φ)∗

≪A(αω). 
 

Definition 2.6. [4, 5] Assume (LX, Ω) be an Lω-space, A∈ LX, γ′∈M and Γ⊆ωO(LX).  
(1) If there is a B∈Γ such that B(x)� γ for each x∈τγ′ (A)={x∈X︱A(x)� γ′ }, then Γ is known as a γω-cover. If there 
exists a prime element t∈α∗(γ) such that Γ is a tω-cover of A, then Γ is said to be a (γω)+-cover of A, where α∗(γ) is 
the standard maximal set of γ. 
 
(2) If there is a B∈Γ such that ωcl(B)(x)� γ for each x∈τγ′ (A)={x∈X︱A(x)� γ′ }, then Γ is known as an almost 
γω-cover. If there exists a prime element t∈α∗(γ) such that Γ is an almost tω-cover of A, then Γ is said to be an 
almost (γω)+-cover of A, where α∗(γ) is the standard maximal set of γ. 
 
Definition2.7. [3, 5] Assume (LX, Ωi) be an Lωi-space (i=1, 2) and f : (LX, Ω1)→(LY, Ω2) an L-valued Zadeh's type 
function.  
(1) If f ←(B)∈ω1O(LX) for each B∈ω2O(LY ), then call f (ω1, ω2)-continuous.  
 
(2) If f ←(ω2cl(ω2int(B)))∈ω1C(LX) for each B∈LY, then call f almost (ω1,ω2)-continuous. 
  
3. LωH-SET AND ITS CHARACTERISTICS 
In this section, we will introduce the concepts of LωH-sets by making use of αω-remote neighborhood family and 
γω-cover in an Lω-space first, give the equivalent characterizations of LωH-set by means of α-net, α-filter and 
α-ideal next, and then discuss the characteristics of LωH-set. 
 
Definition 3.1. Assume (LX, Ω) be an ω-Hausdorff space[6] and A∈LX. If every (αω)−-RF Φ of A has a finite 
subfamily Ψ such that Ψ is an almost (αω)−-RF, where α∈M, then call A an LωH-set.  
 
Theorem 3.1. Let (LX, Ω) be an ω-Hausdorff space and A∈LX. Then A is an LωH-set if and only if for each γ′∈M, 
every (γω)+-cover Γ of A has a finite subfamily µ such that µ is an almost (γω)+-cover of A. 
 
Proof. Necessity. Suppose that A is an LωH-set and Γ is any (γω)+-cover of A (γ′∈M). Put Φ =Γ ' ={B | B′∈Γ} and 
α=γ′. Then α∈M and Φ is an (αω)−-RF of A. In reality, Φ⊆ωC(LX) because of Γ⊆ωO(LX). Since Γ is any 
(γω)+-cover of A，i.e. there exists t∈α∗(γ) such that for each x∈τt′ (A) we can take an ω-closed set P=B′∈Φ with 
B(x)� t, equivalently, t′� B′ (x)=P(x). Let λ=t′，since t∈α∗(γ), we have λ∈M, then P∈ωη−(xλ).This implies that Φ is a 
(αω)−-RF of A. Thus Φ has a finite subfamily Ψ which is an almost (αω)−-RF of A, that is, there exists a s′∈β∗(γ′ ) 
such that for each x∈τγ′ (A) we can take an P∈Ψ with s� ωint(P(x)). In other words, there are s∈α∗(γ) and B=P′∈Ψ 
′=µ with ωcl(B(x))=ωcl(P′(x))=(ωint(P(x)))′� s for each x∈τγ′ (A). This means that µ is a finite subfamily of Γ and an 
almost (γω)+-cover of A. 
Sufficiency. Assume that every (γω)+-cover of A has a finite subfamily which is an almost (γω)+-cover of A (γ′∈M). 
If Φ is a (αω)−-RF of A (α∈M), then Γ =Φ'={P′︱P∈Φ } is a (γω)+-cover of A where γ =α′ , γ′∈M. Hence Γ has a 
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finite subfamily µ which is an almost (γω)+-cover of A by the hypothesis, that is, there exists a t∈α∗(γ) such that for 
each x∈τγ′ (A) we can take P=B′∈µ′ =Ψ with ωcl(B(x))� t. In other words, there are t′∈β∗(γ) and P∈Ψ with 
ωint(P)∈ωη−(xt′) for each x∈τγ′ (A). This means that Ψ is a finite subfamily of Φ and an almost (αω)−-RF of A. 
Therefore A is an LωH-set. 
 
Definition 3.2. Assume (LX, Ω) be an Lω-space, Φ⊆ωC(LX ) and α∈M. Φ is said to has (αω)∗-finite intersection 
property for A, if ∨x∈X (A∧(∧Ψ °))(x)� α for each Ψ∈2(Φ), where Ψ ° ={ωint(P)︱P∈Ψ }. 
 
Theorem 3.2. Let (LX, Ω) be an ω-Hausdorff space[6] and A∈LX. Then A is an LωH-set if and only if for each α∈M 
and each Φ⊆ωC(LX) having (αω)∗-finite intersection property for A, there exists a molecule xα� A with xα� ∧Φ .   
 
Proof. Necessity. Grant that A is an LωH-set, Φ⊆ωC(LX) and Φ has (αω)∗-finite intersection property for A (α∈M). 
If λ∈β∗(α), xα� ∧Φ for each xα� A, then Φ is an (αω)−-RF of A by the hypothesis of Φ. Hence Φ has a finite 
subfamily Ψ which is an almost (αω)－-RF of A, i.e, there is a λ∈β∗(α) satisfying xλ� ∧Ψ° for each xλ� A, in other 
words, ∨x∈X(A∧(∧Ψ))(x)� λ. It contradicts the fact that Φ has (αω)∗-finite intersection property for A. Hence the 
necessity is proved. 
 
Sufficiency. Assume that the condition holds and that Φ is an (αω)－-RF of A. If for any finite subfamily Ψ of Φ , Ψ 
is not an almost (αω)－-RF of A, then for each λ∈β∗(α) there exists a molecule xλ� A with xλ� ∧Ψ, i.e, ∨x∈X 

(A∧(∧Ψ))(x)� λ. This shows that Φ has (αω)∗-finite intersection property for A. By the assumption we have λ∈β∗(α), 
xα� A satisfying xα� ∧Ψ. It contradicts that Φ is an (αω)－-RF of A. Therefore Φ has a finite subfamily Ψ which is an 
almost (αω)－-RF of A, and hence A is an LωH-set. 
 
Theorem 3.3. Let (LX, Ω) be an ω-Hausdorff space and A∈LX. Then A is an LωH-set if and only if for each α∈M 
and λ∈β∗(α), every α-net N in A has an ωθ-cluster point in A with hight λ. 
 
Proof. Necessity. Suppose that A is an LωH-set and that N ={N(n) | n∈D} is an α-net in A. If for each λ∈β∗(α), N 
has not any ωθ-cluster point in A with hight λ, then there exists a P[x]∈ωη−(xλ) such that N is eventually in 
ωint(P[x]) for each xλ� A, that is, there is a n(x)∈D with N(n)� ωint(P[x]) whenever n� n(x). Write Φ={P[x]︱xλ� A}. 
Obviously, Φ is an (αω)－-RF of A, so Φ has a finite subfamily Ψ ={P[xi]︱i=1, 2, … , m } which is an almost 
(αω)−-RF of A, i.e., there is an i∈{1, 2, … , m} with yt� ωint(P[xi]) for some t∈β∗(α), and each yt� A. Take 

][1 i
m
i xPP =∧= . Then yt � ωint(P) for each yt� A . Since D is a directed set, there is a n0∈D，such that n0� n(xi) and 

N(n)� ωint(P[xi]) (i=1, 2, ... , m) whenever n� n0 and so N(n)� ωint(P). This shows that for each yt� A, ∨(N(n))� t as 
long as n� n0. It contradicts the fact that N is an α-net. Therefore N has at least an ωθ-cluster point in A with hight λ. 

 
Sufficiency. Assume that every α-net in A has at least an ωθ-cluster point with hight λ for each α∈M and λ∈β∗(α), 
Φ is an (αω)－-RF of A and 2(Φ) is the set of all finite subfamily of Φ. If for each λ∈β∗(α) and each Ψ∈2(Φ), Ψ is not 
an almost (αω)－-RF of A, i.e., there exists a molecule N(λ, Ψ)� A satisfying N(λ, Ψ)� ∧Ψ for each λ∈β∗(α). In 
β∗(α)×2(Φ), we define the relation as follows: (λ1, Ψ1)� (λ2, Ψ2) if and only if λ1� λ2, Ψ1� Ψ2, then β∗(α)×2(Φ) is a 
directed set with the relation "� ". Let N={N(λ, Ψ)︱(λ, Ψ)∈β∗(α)×2(Φ)}. One can easily see that N is an α-net in A. 
We assert that N has not any ωθ-cluster point in A with hight α. In fact, for some λ∈β∗(α) and each xλ� A, we can 
choose an ω-closed set Q∈Φ with Q∈ωη−(xλ), specially, ωint(Q)∈ωη−(xλ) by the definition of Φ. Taking λ1∈β∗(α) 
and Ψ∈2(Φ), we have Q∈Ψ according to (λ, Ψ)� (λ1, {Q}), and hence N(λ, Ψ)� ωint(Q). This implies that N is 
eventually in ωint(Q), and thus xλ is not an ωθ-cluster point of N. It is in contradiction with the hypothesis of 
sufficiency. Consequently, A is an LωH-set.  
 
Theorem 3.4. Let (LX, Ω) be an Lω-space, A∈LX, and N be an α-net in A(α∈M). Then N∝ωθ xα if and only if there is 
an α-subnet T of N with T→ωθ xα. 
 
Proof. Necessity. Suppose that N={N(n)︱n∈D} is an α-net in A, and N∝ωθ xα．Then N is eventually in ωint(P) for 
each P∈ωη−(xα), that is, for each n0∈D there exists an n∈D with n� n0 satisfying N(n)� ωint(P). Let E={(n, P)︱n∈D, 
P∈ωη−( xα), N(n)� ωint(P)}. For each (n1, P1), (n2, P2)∈E, we define the relation as follows: (n1, P1)� (n2, P2) if and 
only if n1� n2, P1� P2, then E is a directed set with the relation "� ". Assume that φ: E→D with φ(n, P)=n. Let T(n, 
P)=N(φ(n, P))=N(n) for each (n, P)∈E, then T is an α-subnet of N．Now we just need to prove that T→ωθ xα. In fact, 
for each P∈ωη−(xα), taking (n0, P)∈E, when (n, Q)� (n0, P), we have T(n, Q)� ωint(P) according to T(n, 
Q)=N(n)� ωint(Q) and Q� P．This implies that T→ωθ xα． 
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Theorem 3.5. Let (LX, Ω) be an ω-Hausdorff space and A∈LX. Then A is an LωH-set if and only if for each α∈M , 
λ∈β∗(α) and each α-net in A(α∈M), every α-subnet T of N has an ωθ-cluster point in A with hight λ. 
 
Proof.  By Theorem 3.3 and Theorem 3.4, it is proved. 

 
Definition 3.3. Let (LX, Ω) be an ω-Hausdorff space, α∈M and λ∈β∗(α)，∆ be an α-filter in LX and xλ ∈M∗(LX). If 
F� ωint(P) and for each P∈ωη−(xλ) and each F∈∆, then xλ  is called an ωθ-cluster point of ∆ with hight λ.   
 
Theorem 3.6. Let (LX, Ω) be an ω-Hausdorff space and A∈LX. Then A is an LωH-set if and only if for each α∈M 
and λ∈β∗(α), every α-filter containing A has an ωθ-cluster point in A with hight λ. 
 
Proof. Necessity. Grant that A is an LωH-set and that ∆ is an α-filter containing A. Then F∧A∈∆ for each F∈∆ and 
∨x∈X (F∧A)(x)� α, and thus there exists a molecule N(F, λ)� F∧A with hight λ for each λ∈β∗(α). Define N(∆)={N(F, 
λ)� F∧A︱(F, λ)∈∆×β∗(α)} and define a relation in ∆×β∗(α) as follows: 
 

(F1, λ1)� (F2, λ2) if and only if F1� F2 and λ1� λ2. 
 

Evidently, ∆×β∗(α) is a directed set with the relation "� ", and then N(∆) is an α-net in A. Because A is an LωH-set, 
so N(∆) has an ωθ-cluster point in A with hight λ, say xλ. We assert that xλ is also an ωθ-cluster point of ∆. In reality, 
N(∆) is frequently not in ωint(P) for each λ∈β∗(α) and P∈ωη−(xλ), i.e, for each F∈∆ there exists a F1∈∆ with F1� F 
and some r∈β∗(α) satisfying N(F1, r)� ωint(P). Hence we have F� P by virtue of the fact that N(F1, r)� F∧A� F1� F. 
This means that xλ is an ωθ-cluster point of ∆. Therefore the necessity is proved. 
 
Sufficiency. Suppose that every α-filter containing A has an ω-cluster point in A with hight λ for each α∈M and 
λ∈β∗(α). Grant that N={ N(n)︱n∈D} is an α-net in A. Let Fm=∨{ N(n) | n� m}，∆(N) ={F∈LX

︱there is a Fm such 
that F� Fm} for each m∈D. By virtue of the fact that N is α-net, we have ∨x∈X Fm(x)=∨x∈X {∨{ N(n)︱n� m}}( x)� λ 
for each λ∈β∗(α) and m∈D. Then ∨x∈X Fm(x)� α according to the arbitrariness of λ in β∗(α). By the definition of 
∆(N), there exists Fm� F for each F∈∆, so ∨x∈X Fm(x)� α．This implies that ∆(N) is an α-filter containing A, and 
hence ∆(N) has an ωθ-cluster point in A with hight λ for each λ∈β∗(α) by the supposition, say xλ. Then we have 
F� ωint(P) for each P∈ωη−(xλ ) and F∈∆(N), specially, Fm� ωint(P) for each Fm(m∈D). By the definition of Fm, we 
have N(n)� ωint(P) for some n� m. This implies that N is frequently not in ωint(P), in other words, xλ is an ωθ-cluster 
point of N in A with hight λ. In accordance with Theorem 3.3, A is an LωH-set.   
 
Definition 3.4. Assume (LX, Ω) be an Lω-space, I be an α-ideal in LX (α∈M), λ∈β∗(α), xλ∈M∗(LX). If B∨ωint(P)≠1X 
for each P∈ωη−(xλ) and B∈I, then I is called an ωθ-cluster point of I with hight λ. 
 
Theorem 3.7. Let (LX, Ω) be an ω-Hausdorff space and A∈LX. Then A is LωH-set if and only if every α-ideal which 
does not contain A has an ωθ-cluster point in A with hight λ for each α∈M and λ∈β∗(α).  
 
Proof. Necessity. Assume that A is an LωH-set, I is an α-ideal which does not contain A and N(I)={N(I)((b, B))=b� A
︱(b, B)∈D(I)} where D(I)={(b, B)︱b∈M∗(LX), B∈I and b� B}. Then N(I) is an α-net in A. Hence N(I) has an 
ωθ-cluster point in A with hight λ by Theorem 3.3, say xλ. Now we will prove that xλ is also an ωθ-cluster point of I. 
In reality, xλ is an ωθ-cluster point of N(I) in A with hight λ for each λ∈β∗(α), then for each (b0, B0)∈D(I) there 
exists a (b, B)∈D(I) with (b, B)� (b0, B0) satisfying N(I)((b, B))=b� ωint(P). Hence we have B′� ωint(P) by virtue of 
the fact that b� B, equivalently, B∨ωint(P)≠1X. So xα is also an ωθ-cluster point of I. Consequently, the necessity is 
proved.  
 
Sufficiency. Grant that every α-ideal which does not contain A has an ωθ-cluster point in A with hight λ for each 
λ∈β∗(α) (α∈M) and ∆ is an α-filter containing A. Let I={ F′∈LX

︱F∈∆} . Evidently, I is an α-ideal which does not 
contain A. Now we will prove that ∆ has an ωθ-cluster point in A with hight λ for each λ∈β∗(α). Actually, by the 
hypothesis we know that I has an ωθ-cluster point in A with hight λ for each λ∈β∗(α), say xλ, i.e., F′ ∨P ≠1X, 
equivalently, F� P, for each F∈∆ and each P∈ωη−(xλ). Therefore xλ is an ωθ-cluster point of ∆ in line with 
Definition 3.3, and hence A is an LωH-set by Theorem 3.6. This implies that the sufficiency holds. 

 
4. SOME IMPORTANT PROPERTIES OF LωH-SETS 
In this section, we will further deliberate the properties of LωH-sets in an Lω-space.  
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Definition 4.1. Assume (LX, Ω) be an ω-Hausdorff space. If the largest Lω-set 1X is LωH-set, then call (LX, Ω) an 
LωH-closed space. 
 
Theorem 4.1. Let (LX, Ω) be an ω-Hausdorff space and A, B∈LX. If A is an LωH-set and B is an ω-regular closed set, 
then A∧B is an LωH-set. 
 
Proof. Assume that Φ is an (αω)－-RF of A∧B (α∈M) . Let Φ ∗=Φ ∪{ B}，we asset that Φ ∗ is an (αω)－-RF of A. 
Actually, for some λ∈β∗(α) and for each xλ� A, if xλ� B, then we have xλ� A∧B. Since ∧Φ<(A∧B)(λ), there exists a 
P∈Φ⊂ with P∈ωη−(xλ). If xλ� B，then we have B∈ωη−(xλ) and B∈. Since A is an LωH-set, there exist t∈β∗(α) and 
Ψ ∗∈2(Φ* ), such that Ψ ∗ is an almost tω-RF of A. LetΨ=Ψ ∗\{ B}, then Ψ∈2(Φ) and xt∈A if xt� A∧B. By the property 
of Ψ ∗, there exists P∈Ψ ∗ such that ωint(P)∈ωη−(xt). But xt� B, so P≠B, i.e. P∈Ψ, then we have (∧Ψ )∗<(A∧B)(t). 
This implies that Ψ is an almost (αω)－-RF of Φ, and hence A∧B is an LωH-set. 
 
This theorem shows that LωH-set is hereditary with respect to ω-regular closed sets. 
 
Theorem 4.2. Let (LX, Ω1) be an Lω1H-closed space, and (LY, Ω2) be ω2-Hausdorff space. If f : LX→LY is a fully, 
strata-preserving and inverted strata-preserving almost (ω1, ω2)-continuous fuzzy mapping, then (LY, Ω2) is an 
Lω2H-closed space. 
 
Proof. Assume that N={N(n)︱n∈D} is an α-net in LY(α∈M). By the inverted strata-preserving of f, there exists a 
r∈M such that ƒ←(N)={ ƒ←(N(n)︱n∈D} is an r-net in LX. Since LX is an Lω1H-closed space, ƒ←(N) has an 
ω1θ-cluster point in LX with hight t for each t∈β∗(r), say xt．By the strata-preserving of f, there exists a λ∈M such 
that ƒ(xt)=yλ∈M∗(LY). Now we will prove that yλ is an ω2θ-cluster point of N. In reality, f-←(ω2cl(ω2int(B)))∈ωη−(xt) 
for each B∈ω2η−(yλ). Then there exists a n∈D such that ƒ←(N(n))�  ω2int(ƒ←(ω2cl(ω2int(B))). Since 
 

ƒ←(ω2int(B))� ω2int(ƒ←(ω2int(ω2cl(ω2int(B))))� ω2int(ƒ←(ω2cl(ω2int(B))))， 
 

we have ƒ←(N(n)� ƒ←(ω2int(B)), i.e. N(n)� ω2int(B). This implies that yλ is an ω2θ-cluster point of N, and hence (LY, 
Ω2) is an Lω2H-closed space. 
 

This theorem means that the LωH-closed space is topological variant under the strata-preserving and inverted 
strata-preserving almost (ω1, ω2)-continuous mappings. 
 
Theorem 4.3. Let (LX, Ω1) and (LY, Ω2) be an Lω1-space and an Lω2-space respectively, and f : LX→ LY be an (ω1, 
ω2)-continuous L-valued Zadeh's type function. If A is an Lω1-compact set in (LX, Ω1), then f→(A) is an Lω2-compact 
set in (LY, Ω2). 
 
Proof. Since L-valued Zadeh's type function is also strata-preserving and inverted strata-preserving 
order-homomorphism, the theorem is hold in line with Theorem 4.2. 
 
This theorem means that the LωH-closedness is topological variant under almost (ω1, ω2)-continuous L-valued 
Zadeh's type functions. 
 

Theorem 4.4.  Let (LX, Ω) be the product space of a collection of Lω-spaces {( tXL , Ωt)︱t∈Γ }. If for each t∈Γ, 
( tXL , Ωt) is an LωtH-closed space, then (LX, Ω) is an Lω H-closed space. 
 

Proof. Assume that N is an α-net in A. Since projection mapping pt :LX
→

tXL (t∈Γ) is a ω -continuous 

order-homomorphism, pt(N) is an α-net in ( tXL , Ωt ). By the hypothesis, we know that (tXL , Ωt ) is an LωtH- closed 

space for each t∈Γ, so there is an ωtθ-cluster point of pt(N) in tXL  with hight λt for each λt∈β∗(α), say 
t

xλ . Let 

( )
t tx xλ λ ∈Γ= , then

 
xλ is an ωθ-cluster point of N in LX with hight λ for each λ∈β∗(α). This implies that (LX, Ω) is 

an LωH-closed space . 
 
This theorem means that the LωH-closedness is arbitrarily multiplicative. 
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