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ABSTRACT

The Eu**, Tb*, Pr* ions activated SYMoO, phosphors have been synthesized using a conventional solid-state
reaction under the 600 C, starting from Eu,Os, Th,O7, Th ¢O1; and (NH4),MoO, as raw materials. The crystal
structures of the products are characterized by Powders X-ray Diffraction (XRD). The results indicated that the
nanoparticles crystallized in a tetragonal system of scheelite type. The typical emission spectrum of
S0.05sM00,:0.05EU* phosphors consists of sharp lines peaking at 532, 553, 590, 611 and 649nm, which are
assigned to °Dy -'Fy, "Dy - "Fo, °Do - 'F1, °Dg -'Foand °Dy -'F5 respectively. When the Tb** is doped, the emission
spectra composed of four emission peaks located at 487, 543, 579, and 617 nm, which are ascribed to the °D,—Fe,
°D,—~'Fs, °D,—'F4 and °D,—'F; transitions of Tb*. The characteristic green luminescence of the
S06sM00,:0.05Pr** component on excitation at 241nm was attributed to the °P, excited state of Pr®". The most
intense lines with maxima at 486 and 643 nm correspond to the *Py->H, and *Py-°F, transitions respectively.
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Alkali rare earth molybdate AMogxLn**, where A=alkali metal ions, fr rare earth ions) are of particular
interest since their crystal structure (Fig.1) godential application in areas such as laser hpsissphors, optical
fibers, pigments, humidity sensors, magnetic malgrionic conductors, cataly$t3. Recently, molybdates have
been extgnﬁively studied due to its attractive h@scence behavior and interesting structural ano-&pctronic
properties” ™.

Over the past several years, abundant effort hes fcused on the development of new syntheticesotdr the
most efficient solid-state lighting sources in tighting industry. Pochporch-making advancementifeen made to
the assembly nanocrystals for the fabrication ofidsstate lighting nanocrystal materidls In general,
dimensionality, shape, and size are vigorouslyteel4o the property of a mateffalUp until now, many distinctive
preparation techniques, such as solid-state reectio Czochralski methddl, solvothermal procedurés
microwave irradiation proce$¥, hydrothermal cour§g!, electrochemical routinds” and sol-gel synthestd are
successfully used in the synthesis of differentgaaic nanocrystal materials. In these varioushsgis routes, the
solid-state reactions play an important role in ph& and production of nanomaterial and have tmemessful in
overcoming the complexity to the process. Howetrer, fabrication of the G@Mo0Q,)s: EW** Nanostructures with
well-controlled in shape, phase purity, chemicaiposition, and desired property remains as oneh@fnbain
challenging issues by material's scientists. Thietroled micro/nano architectures via chemical -ss§embly
routes still remains a challenge in materials clsémpiresearch for its great application potentidierefore, we
report nanoparticles of SrMa@oped with Et, Tb**, PF* ions with perfectly crystalline morphology withoamy
organic additives. In this paper, Trivalent prageonidim doped strontium molybdate (SrMgQvas synthesized by
solid-state reactions and the crystal structure landnescent properties were investigated. We algulore the
luminescence by changing kinds of trivalent rargke®mns at room temperature. The CIE chromatidiggrams for
Sro.9dM00,:0.05L* phosphors are investigated in detail.
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EXPERIMENTAL SECTION

1.1 Synthesis of SroesM 004:0.05Ln*(Ln = Eu, Tb, Pr)

The analytical grade chemicals were used withaatting further for purification. $gtMoO,:xLn**(Ln = Eu, Tb, Pr)
phosphors were prepared by a standard solid-stalmitue. High-purity starting materials such agdsuThb,0-,

Tb 6011 99.99%), (NH),M00O, (Aldrich, 99.9%) and SrCQ(Aldrich, 99.9%) were used. Assuming a complete
reaction and in accordance with the stoichiome#io, the materials were weighted and sufficiegtigunded until
the mixture became the homogeneous and viscousirgtec Then, the samples were sintered at 850°G@verh.
Finally, they were ground slightly to obtain theopphor powder.

Fig. 1 Crystal structure of STM0O,
1.2 Characterization
The crystal structures and morphologies of the petedwere characterized by X-ray powder diffractrnathod
(XRD). XRD analysis was carried out on a BRUKER B8vance powder diffractometer using (curadiation
(A=0.1541874 nm). The applied current and the acatitey voltage were 40 mA and 40 kV, respectivelye P9
ranges of all the data sets are from 10° to 70h witstep size of 0.05°. The photoluminescence speetre
recorded using a Perkin Elmer (LS-55) instrumefitth®e measurements were performed at room temyerat

RESULTSAND DISCUSSION

2.1 XRD characterization of the SresM004:0.05Ln* (Ln = Eu, Th, Pr) phosphor

Fig. 2 presents the XRD patterns of thg¢3v00,:0.05Lr" powders containing 5.00% of Eurb*, and Pt
phosphors annealed at 600 °C for 5h. Accordindheo XCPDS(NO.08-0482) database, all diffraction peag&re
indexed as a scheelite-like single phase of theo®\Mpresenting the tetragonal symmetry with a spacegidl/a
(88) indicating no impurity phase is found when tmé* dopant concentration is 5mol %.
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Fig.2 XRD patterns of SrsM004:0.05L n*phosphors

2.2 Luminescent properties of the SrqgsM 004:0.05Ln*" (Ln= Eu, Tb, Pr)

Fig. 3 gives the excitation spectra ofy $M00,:0.05EJ" powders heat treated at 600 °C for 5h at the room
temperature, which were obtained setting th&" Bmission maximum at 612 nm.The excitation peaksaofiples
consist of a broad band region (200-320 nm) andpggrof sharp peaks located at 320-500 nm. The dorbroad
excitation band at 200-320 nm is attributed todharge-transfer (CT) transition from 2p orbital@¥ ions to the

4f orbital of EJ* ions. It was noticed the characteristic sharp pemicurring in the longer wavelength region are
assigned to the intra-configuration 4f—4f transiicof Ed* ions in the host lattice of §&W0O,:0.05Ed*and the
"Fo-°Lg and "Fo-°Dj5 transitions at 394 nm and 417 nm, respectivelye €mission spectra of GEM00,:0.05E4"
phosphors under 225 and 259 nm excitation are shiowig. 4. Due to the similar photoluminescentrelater of
Sry.99M00,:0.05E" with different excitation wavelength, we just take 225nm excitation wavelength spectra for
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example. The typical spectrum essentially considtsharp peaks at wavelengths from 500 to 700 nhe T
corresponding emission spectrum consists of theactexistic transitions of Etiwithin its 4f configuration, i.e.,
°D; -'F; (532 nm),’Dg - "Fo (553 nm),’Dy - ‘F; (590 nm),;’Dy -'F, (611nm) andDy, -'F5 (649 nm). The strongest one
is located at 611 nm.
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Fig.3 Excitation spectrum of SrqgsM 004:0.05Eu*"
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Fig.4 Emission spectrum of SroesM004:0.05Eu**
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Fig. 5 Excitation spectrum of SrgsM00,:0.05Tb*

The excitation and emission spectra of S¥100,:0.05T" phosphors are shown in Fig. 5, Fig. 6, respegtiviel
can be seen that the excitation spectrum monitaté&dt3 nm exhibits a wide band from 220 to 280 mhe broad
band can be ascribed to®4¢5f'd" (f—d) transition of TB" ion, which is caused by the dipolar electric parit
allowed transition. The emission spectrum excitgd260,223 nm look very similar, which composed ofirf
emission peaks located at 487, 543, 579, and 61 %hiuh are ascribed to thB,-"Fs, °D4-'Fs, °Ds-'Fs and®D,-'Fs
transitions of TB" respectively and the gre€d,-’Fs emission located at 543 nm is dominant. The ekoita
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spectrum of S$edV00,:0.05PF" phosphor §_ =645nm) is shown in Fig. 7. The excitation spectofithe*Py-°F,
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Fig. 6 Emission spectrum of SrogM00,:0.05Tb*
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Fig.7 Excitation spectrum of SrogM 00,:0.05Pr**

Fig. 8 shows the excitation spectrum dependend¢eeoémission spectra of $gM00,:0.05PF* at 254 transition of
Pr*is composed of the host broadband in the UV regignish were assigned to the 4f-5d transition of ®r a
charge transfer transition from“R0* to PF*-0***!! The manifold of sharp lines peaking at 450, 4] 487

nm are assigned to tHel,-*P,, *H,-°P;, and®H,-*P, absorption transitions of Prrespectively™®*® and 241nm.
Upon the two excitation wavelength, similar behasiare observed for crystals. They present a sefiegatively
sharp features mainly originating in tf& excited state of Bt. The most intense lines with maxima at 486 and 643
nm correspond to th#,-*H, and®Py-°F, transitions, respectively. The weaker multipletie 510-580 nm range is
assigned to théP,-*Hs and that in the 590—-630 nm range to Rg*Hs and 'D,-*H, transitions.The Commission

Internationale de I'Eclairage (CIE)-1931 chromajiceoordinates of $eM00,:0.05LF*(Ln = Eu, Tb, Pr)
phosphors were calculated using a ColorCoordinetgeogram.
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Fig. 8 Emission spectrum of SrogsM004:0.05Pr 3
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As shown in Fig. 9, when we doped*ub*, PF* ions in Si,Mo0Q,, the color tones change from buff (CIE
coordinates x= 0.456, y=0.380) to white (CIE cooades x= 0.375, y=0.364) and yellowish green (Gi&rdinates
x=0.297, y=0.506) by adjusting the kind of dopiager earth.
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Fig. 9 CIE chromaticity diagram for Sr1.xM0O4:xPr samples
CONCLUSION

In summary, rare earth dop&th ¢gM00,:0.05LF* (Ln = Eu, Th, Pr) phosphors have been synthedigesblid-state
technique. All the investigated samples were charaed by XRD and PL. The XRD patterns showedmpuirity
phase is found when the Yrdopant concentration is 5mol %. The correspondimission spectrum consists of the
characteristic transitions of By Tb** and Pi*ions.
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