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ABSTRACT 

 

With the significant increase of greenhouse gases and environmental deterioration, it is essential to understand trends of 
CO2 emissions form fossil fuel so as to establish effective energy policies and environmental strategy decision. In this 

study, a novel integrated forecasting model with adaptive parameters optimization by using Harmony Search (HS) 

algorithm for carbon dioxide emissions is established. In this proposed model, the integrated weights and nonlinear 

exponential parameters for single models are determined by HS. This novel integrated model is applied to CO2 
emissions from 2000 to 2010 for China and United States in order to test the applicabilit y and forecasting accuracy. 

Through the comparison with other integrated methods (EW, VACO, R, DMFSE), our model showed better forecasting 

performance with the smaller MAPE.   
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INTRODUCTION 

 

It is widely considered that the greenhouse gas (GHG) causes the global climate change and environmental degradation. 

The real increase in GHG began around the time of the Industrial Revolution. This is when we began to burn fossil fuels 
in large quantities to power our steam engines for industry, generate electricity, and heat our homes. About three 

quarters of the human-caused carbon emissions of the past 20 years are due to fossil fuel burning. Furthermore, the 

global CO2 emissions from fossil fuel consumption will also have grown strongly in the future. It is projected by EIA 

that the energy-related CO2 emissions in 2035 are 5864 million metric tons and 6795 million metric tons, respectively 
[1]. To establish effective energy policies and environmental strategy decision requires understanding of trends of CO2 

emissions form fossil fuel. Therefore, accurate forecasting of emissions is important.  

 
In CO2 forecasting modeling, a large number of literatures using various estimation methods have been published . 

Bulent [2], and Raghuvanshi [3] employed trend analysis approach for modeling world total carbon dioxide emissions 

and CO2 emissions from power generation in India. Liang [4] established a multi-regional input-output model for 

energy requirements and CO2 emissions for eight economic regions in China and performed scenario in year 2010 and 
2020. Chen [5] proposed a hybrid fuzzy linear regression (FLR) and back propagation network (BPN) approach for 

global CO2 concentration forecasting. Sun [6] provided a GDP based alternative viewpoint on the forecasting of energy-

related CO2 emissions in OECD countries. Pao [7] and Lin [8] applied Grey prediction model (GM) to predict CO2 
emissions in Brazil and Taiwan. Ramanathan [9] used Data Envelopment Analysis (DEA) method for the prediction of 

energy consumption and carbon dioxide emissions from 17 countries of the Middle East and North Africa. He (2010) 

[10] estimated China's future energy requirements and projected its CO2 emission from 2010 to 2020 based on the 

scenario analysis approach. 
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No matter what single forecasting models for energy or CO2 emissions prediction, a certain number of undetermined 
parameter exist in forecasting models. The way selecting the parameters will affect the forecasting accuracy. The 

adaptive optimization for parameters is the key to solve this kind of problems. Furthermore, there is significant 

uncertainty associated with future CO2 emissions trend, so single forecasting model may not describe the trend 

accurately in all situations. The integrated forecasting model can synthesize the information of each individual forecast 
into a composite forecast so as to face less risk in choosing an individual method out of a set of available methods [11-

13].  

 

The purpose of this study is to develop an integrated model with adaptive parameters optimization, which is an effective 
way to improve the accuracy of the forecasting problem. Through using Harmony Search (HS) algorithm, the integrated 

weights and nonlinear exponential parameters for single model can be determined by adaptive optimization. 

 

METHODOLOGIES 

 

Adaptive optimization for combined weights 

The method of combination forecasting with adaptive optimization is described in this part. Firstly, the optimization 
objective function is specified as the mean absolute percentage error (MAPE). The MAPE is measure of accuracy in a 

fitted time series value in statistics, specifically trending. It usually expresses accuracy as a percentage, eliminating the 

interaction between negative and positive values by taking absolute operation [14], shown in Eq. (1).  
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where ty is the actual value for tth period; ty


 denotes the integrated forecasting value for the same period. ty


can be 

calculated through Eq. (2). 
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ty is the ith forecasting in time period t; k is the number of forecasts to be combined. A novel nonlinear 

integrated model is adopted to obtain better fitting performance. Then the optimization objective function is expressed as 
follows. 
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Secondly, determine the parameters through using Harmony Search (HS) algorithm. In Eq. (3), the optimal value of the 

integrated weights i and exponential parameter in for the ith separate can be found by using HS. Next section shows 

the procedures of HS algorithm.  

 

Harmony Search Algorithm (HS) 
Recently, a new meta-heuristic optimization algorithm named Harmony Search (HS) is proposed by Geem et al [15]. It 

mimics the improvisation process of music players for a perfect state of harmony. The HS algorithm behaves excellent 

effectiveness and robustness when applied to several optimization problems and presents lots of advantages when 
compared to other heuristic optimization algorithms [16-17]. Fig. 1 shows the HS optimization procedures which 

consists of Steps 1-5 shown as follows. HS optimization procedures consisting of Steps 1-5 are shown as follows. 
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Initialize the optimization problem and HS algorithm parameters

To minimize the objective function f(x)

Algorithm parameters: decision variables

the lower and upper bounds for each decision variable

Harmony Memory Size( HMS )

Harmony memory considering rate (HMCR)

pitch adjusting rate (PAR)

termination criterion (maximum number of search)

Step 1

Initialize the harmony Memory 

Generate initial harmony  [solution vector]

(as many as the value of HMS)

Step 2

Improvise a new harmony

based on three rules: (a) memory consideration, (b) pitch adjustment, 

(c) random selection.

Step 3

If new 

Harmony solution better 

Than the worst harmony 

in HM?

Updata the HM

Yes
Step 4

No

Stop

Yes

No

Step 5
Termination

criterion satisfied?

 
 

Fig. 1. The flowchart for Harmony Search algorithm 

 

Step 1. Initialize the optimization problem and algorithm parameters. 

In this step, the objective function and the design variable set are determined first. Then, the harmony memory size 
(HMS), harmony memory considering rate (HMCR), pitch adjusting rate (PAR), the lower and upper bounds for each 

decision variable are also specified in this step. 

 

Step 2. Initialize the Harmony Memory (HM). 
HM is a memory location that stored all the solution for decision variables. And the HM matrix is filled with as many 

randomly generated solution vectors as the HMS and sorted by the objective function values.  

 

Step 3. Improvise a new harmony from the HM. 
A new harmony vector is generated based on three rules: memory consideration, pitch adjustment and random selection. 

 

Step 4. Update the HM. 
If the new harmony vector is better than the worst harmony in the HM, judged in terms of the objective function value, 

the new harmony is included in the HM and the previous worst harmony is excluded from the HM. The HM is then 

sorted by the objective function value. 

 
Step 5. Repeat steps 3 and 4 until the termination criterion is satisfied. 

The computations are terminated when the termination criterion is satisfied. If not, Steps 3 and 4 are repeated. 

 

EMPIRICAL SIMULATION AND RESULTS 
This section describes how to apply the HS algorithm to integrated forecasting model with adaptive parameters 

optimization model. To test the applicability and efficiency of the proposed method, the proposed method is applied to 

China and United States. The annual CO2 emissions data of China and United States for the period from 2000 until 2010 
are collected from BP [18]. Combined China and Unites States, these two countries alone produced 14.48 Gt CO2, about 

43.6% of world CO2 emissions. China, the world’s largest emitter of CO2 emissions from fuel combustion, generated 
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8.33 Gt CO2, which accounts 25.1% of the world total. Due to the energy-intensive industrial production, large coal 

reserves exist and intensified use of coal, the CO2 emissions would increase substantially for a certain period. The 
United States generated 18.5% of world CO2 emissions, despite a population of less than 5% of the global total. In the 

United States, the large share of global emissions is associated with a commensurate share of economic output. 

 

Firstly, choose individual forecasting model and calculate separate forecasting result before we establish the integrated 
model. In our work, we adopted linear regression, time series, Grey (1, 1) and Grey Verhulst model [19].  

 

Secondly, establish integrated model with adaptive parameters optimization by using HS algorithm. In simulation, the 

selection of HS algorithm parameters is as follows. 
 

HMS=20, PAR=0.5, HMCR=0.5, BW=1, lb=-100, ub=100.  

HMS: harmony memory size； 

HMCR: harmony memory considering rate； 

PAR: pitch adjusting rate;  
BW: population variance (bandwidth); 

lb: the lower bound for variables; 

ub: the upper bound for variables. 

 
All the programs were run on a 2.27GHz Intel Core Double CPU with 1 GB of random access memory. The optimal 

values of integrated weights i and exponential parameter in for the ith separate model searched by HS are shown in 

Table 1. Table 2 shows the original CO2 data and forecasting results for China and US through using presented 

integrated model with adaptive parameters optimization. Fig. 2 displays the fitting curve using our integrated model with 
adaptive parameters optimization model for China and US.  

 

 

 

 

 

 

 

 
Table 1. Parameters determine by HS 

 

Parameters Countries 1 2 3 4 

ω  
China 1.0765  -95.7937  87.0434  6.8516  

US 6.4290  83.2769  56.7556  -55.1495  

n 
China 0.9698  -2.4801  -2.4435  -69.1194  

US -81.0547  -3.6783  -0.7636  -1.0779  

 

Table 2. Original and Forecasting results for China and US 

 

 China US 

Year Original Forecast Original Forecast 

2000 3659.3483 3642.9790 6377.0493 6408.1152 

2001 3736.9794 3748.8364 6248.3608 6321.3989 

2002 3969.8231 3965.2189 6296.2248 6331.9540 

2003 4613.9200 4429.5809 6343.4769 6339.9834 

2004 5357.1651 5300.0054 6472.4463 6345.2326 

2005 5931.9713 6002.6140 6493.7341 6347.4229 

2006 6519.5965 6506.2892 6411.9503 6346.2487 

2007 6979.4653 6991.2216 6523.7987 6341.3745 

2008 7184.8542 7436.0752 6332.6004 6332.4326 

2009 7546.6829 7838.4159 5904.0382 6319.0198 

2010 8332.5158 8287.4665 6144.8510 6300.6933 
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Fig. 2: Original and forecasting curve for China and US 

 

To evaluate the forecasting accuracy of the presented model’s performance, the mean absolute percentage error (MAPE) 
was calculated for China and US. The performance of the presented mode is also compared with Equivalent Weight 

(EW) method, Variance-Covariance (VACO) Method, Regression combination (R) method, Discounted Mean Square 

Forecast Error (DMSFE) method. From Table 3, we can see that the MAPE of integrated model with adaptive 

parameters optimization is much smaller that other integrated method. For China, the MAPE for EW, VACO, R and 
DMFSE are 3.92206%, 3.0601%, 2.6447% and 3.2069% respectively, while the MAPE for the integrated model with 

adaptive parameters optimization is 1.4008%. For US, the corresponding MAPE values are 2.4754%, 2.0494%, 

8.3801%, 2.3788% and 1.8078% respectively.  

 
Taking the MAPE of the integrated model with adaptive parameters optimization as a benchmark, the improvement rate 

with respect to other four combination models is also calculated. The improvement rates of EW, VACO, R and DMFSE 

are 129.92%, 118.45%, 88.80%, 128.93% respectively, for China; 36.93%, 13.36%, 363.55%, 31.59% respectively, for 
United States. Therefore, it can be conclude that the integrated model with adaptive parameters optimization can 

increase the forecasting accuracy compared with other traditional combination models.  

 

Since the combination weights for EW, VACO, R and DMSFE integrated method can be definitely calculated through 
certain equations, these fixed weights can not be changed in future forecasting. Due to the uncertainty of future data 

trend, the fixed weights may not the best fitting performance for future use. In our proposed adaptive parameters 

optimization, the weights and the exponential parameter would change along with the input and output information in 
order to obtain the best performance. 

 
Table 3. MAPE for China and US 

 

MAPE(%) EW VACO R DMFSE Proposed method 

China 3.2206 3.0601 2.6447 3.2069 1.4008 

US 2.4754 2.0494 8.3801 2.3788 1.8078 

 

CONCLUSION 

 

This paper presented a novel integrated forecasting model with adaptive parameters optimization through using 

Harmony Search (HS) algorithm. The integrated model can synthesize the information of each individual forecast to 
reduce the risk of a single forecasting model. All the integrated weights and exponential index can be determined by HS, 

which would change along with the input and output information. Compared with fixed weight, the adaptive parameters 

can simulate the future carbon dioxide trend. The empirical results reveal that this proposed model showed better 

forecasting performance with smaller mean absolute percentage error.  
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