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ABSTRACT

This paper is concerned with a mathematical modehfimerical simulation of 1D discontinuous flonoplems.
The governing water equations are solved by an igitpbi-diagonal numerical scheme, based on the
MacCormack’s predictor-corrector technique, and tbscillations near the vicinity of discontinuityéstks are
smoothed by a proposed technique. The mathematiocdkel was used to numerically compute the watdiasar
from supercritical flow to subcritical one or frosubcritical flow to supercritical one in a rectarlguopen channel,
and was also used to predict 1D wave due to amaimaheous opening of sluice gate problem in a reptéar open
channel, and their results are in agreement with theoretical results, which shows that the prodosesthod is
accurate, reliable and effective in simulation &fadntinuous flow problems.

Keywords: numerical simulation, implicit scheme, oscillatjodiscontinuous flow problems, predictor-corrector
technique

INTRODUCTION

The discontinuous flow problems such as flood wabfeen appear in hydraulic engineering. The floa/evcaused
by a dam failure can result in the loss of humaadiand have a severe economic impact. Therefiyaficant

efforts have been carried out over the years tayre methods for determination of the extent aming of the

flood wave. Most of these methods are based orsahgion of the Shallow Water equations. By follagithis

approach, the originally three-dimensional probleguces to 2D Shallow Water equations (1D caseritbescby

the Saint Venant equations) with a moving boundaparating the wet and dry areas of the domain.f€atare of
hyperbolic equations of this type is the formatabores (i.e., the rapidly varying discontinuolsa). It is an

important basis for validating the numerical methdtkether the scheme can capture the bore wavesaseiguor

not. This gives rise to an increasing interesbiviag such a problem.

To overcome these problems and improve shock dapgtyoroperty of finite difference schemes, vari@eod
shock-capturing finite-difference methods developad applied widely in computational gas dynamiagehbeen
introduced to solve the SWEs in hydrodynamics wtitle free surface flows. For example, A spatime
conservation method [1] differing from the traditéd methods was applied successfully to solve #iatS/enant
equations [2]. Fraccarollo and Toro [3] applied theighted average flux method and Glaister [4,5¢spnted an
approximate Riemann solver. Rao and Latha [6], Mugc [7] used the modified Lariedrich scheme, Savic and

Holly [8] used the Godunov method, a scheme witlnerical or artificial viscosity and/or adding a sutiting term
to Finite Difference Equation (FDE) to dampen tkeiltations [9-11].

A characteristic feature of all second- and higbreter accurate schemes lies in producing dispeesiges near the

vicinity of discontinuity/shocks [12]. These errpnshich are manifest in the form of oscillationged to be
smoothed at the instant of their generation. Basethe above research results; the goal of theegurwork is to
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develop a mathematical model capable of dealing tydraulic discontinuities such as steep frongsr&ulic jump
and drop, etc. The water governing equations has belved by an implicit bi-diagonal numerical stieebased on
the MacCormack’s predictor-corrector technique.the present work we have used the procedure offigina
suggested by Jameson et al. [13] to reduce nunhescdlations.

MATHEMATICAL MODEL
The conservation Laws of the governing flow equaidor the physical domain, assuming that the fisw
homogeneous, incompressible, 1D and viscous withdsyatic pressure distribution, are [14]:
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where g=component of discharge per unit width alangdjrection; g.=bottom slope along x-direction,; ang s
=friction slope along x-direction. The friction gles & is determined by the Manning formula

n2 2
Sy =t ®

where n=Mannings'’s flow friction coefficient.

By utilizing a local characteristic approach, tlygiigalent nonconservative form of (1) can be expedsas

_+A_:Q

oE oE
E
ot o0X ( ) @

The Jacobian of the fluxes are,
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where c is celeritg?=gh.

The eigenvalues of matrices A is,

e.=(aq,/h+cq/h’ (6)

The governing equations are known to be hyperbafiich implies that A has complete set of indeerncnd real
eigenvector. Therefore, the Jacobian can be writteliagonalized form as[14]:

A=eee™ (7
where e and g are matrices and inverse matrices of eigenvectfoks
NUMERICAL SCHEME

The scheme is an implicit finite-volume method tiare-integrating the Navier-Stockes equationss BRécond-order
accurate in space and time, unconditionally stable] very efficient in that no block or scalar digonal
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inversions need to be calculated. Eq.(4) is integrdy the following implicit predictor-correctoetsof finite-
difference equation[14,15]:

Predictor

AET :—At(A;iin —Q”j (8a)
(I - At A;’:n JaEi"ﬂ =AE" (8b)
EM = E"+AE™ (8c)
Corrector B
AE™ = -At (%Xl - Q””] (92)
(I il AAXM J JE™ = AE™ (9b)
E™ =1/2(E"+E™+5E™) (90)

while A"/Ax is one-sided forward difference; axithx is one-sided backward difference. For example, dhe-
sided forward and backward differences in x digcfor the fluxF are

AX AX AX AX

The equations can be solved by sweeping in theection.

A characteristic feature of all second- and higbreter accurate schemes lies in producing dispeesiges near the
vicinity of discontinuity/shocks [12]. These errpnshich are manifest in the form of oscillationged to be
smoothed at the instant of their generation. Inpitesent work we have used the procedure origisalfygested by
Jameson et al. [13] to reduce numerical oscillatidys per this approach, the two flow variablessameothed as

B = B 8y (B - B -4l B FY) av

where

g o N2 .
B R [ Ty

and

Gz = HMAX(E &) (13)

The solution obtained by Eq. (11) is free from ntina oscillations. The smoothing mechanism, aslmaiseen by
Eq. (12), is triggered only in oscillatory regioi®r regions where the flow is uniform, the numerah Eq. (12)
goes to zero, leaving the solution computed usigg (Bc) unaltered. The parametarin Eq. (13) is known as

dissipation constant which controls the degreenadathing. Based on trial and error, in this work lveeve selected
its value to be 0.6.

INITIAL AND BOUNDARY CONDITIONS
At the initial time, still water is assumed insidhe computation domain.
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The boundaries are inflow boundary and outflow larg. The inflow boundary condition is given as thater
surface elevation or the discharge hydrograph pér width at the upstream end; and the outflow ltzug
condition is given as the water surface elevation.

STABILITY CONDITION
The above-described numerical scheme is a timehimgyenethod in whichA t must be satisfied with Courant-Friedrichs-Levy

Condition. For every point i of the computationahtiin the A t time step is expresses iyt = min ( DT) ,where

AX
DT =————.
lul++/gh

RESULTSAND DISCUSSION

Simulation of hydraulic jump and drop:

The hydraulic drop is basic physical phenomenonaitural rivers or open channel flows. Unlike a ladic jump,

in which an abrupt increase of water surface ocduris characterized by a substantial decreasevatér depth
within a short distance along the flow directionemhthe flow changes from the subcritical to supgcet state.

According to open channel hydraulics [16], both hiyeraulic jump and the hydraulic drop will occiithe inflow

is in the supercritical state in a fairly long chah with a mild bed slope, followed by a fairlynp channel with a
steep bed slope. Such a complex flow forms a usestiproblem.

The straight rectangular channel consists of tvaxhies with different slopes: an upstream horizamath (S=0),
followed by a reach with a steep slope (S=0.03g fitst reach is 14.5m long, and the second isrhi6Both are
1.4m wide (Figurel).

The entrance velocities and depth are u=3.571wsOms' and h=0.06m, and the corresponding entrance Froude
number is Fr=4.65; no exit boundary condition fepth is needed because there is a critical deptheircross-
section at the change in the slope, which automlatiplays the part of the internal boundary coioditfor both
hydraulic jump upstream and supercritical flow dstwream.
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Fig.1. Profile of the depth in hydraulic jump and drop.

The following numerical parameters were used indhmaputations:A x=0.5m, A y=0.14m; Manning’s coefficient
n=0.019.

Figure 1 shows the profile of the central depthhie channel. As expected, the profile consists bf3acurve, a
hydraulic jump, a H2 curve, a hydraulic drop, acB&e and uniform flow.

Theoretically, a hydraulic jump will occur when thpstream Froude number; Fdepth h and downstream depth h
satisfy the Blanger formulah,/ hf%(w[SFrzl +1—1j . This can be used to check the results by the mbdam the

numerical results, the upstream Froude numberhdepd downstream depth of the jump arg=Er715, h=0.111m
and h=0.216m respectively. Substitution of;£t.715 and +0.111m into the Blanger formula results in the

theoretical downstream depth required for the jum;pﬁ2 =0.219m. his thus very close to the theoretical

downstream deptlﬁz. The relative error is 1.43%.

In addition, the hydraulic drop occurs in the regiaround the change in slope and the central waaeth
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(h=0.164m) at the change is very close to the ttaxal critical depth (+0.167m) calculated from the critical depth

equation h:%/QZ / gw? (where w is the width of the channel). After theltgulic drop, the flow quickly approaches

uniform flow along the second reach. The depthattownstream end of the channel is h=0.111m, coedpaith a
normal depth }+0.105 m calculated from the Manning formula foiform flows [16].

Simulation of instantaneous opening of sluice gate problem:
The problem considered here is the total instatan@pening of sluice gate on a flat and frictisalded. This
provides an ideal test case for shock-capturingnsel since analytical solution has been known.rEigushows the

illustration of the total instantaneous openingloice gate, where the initial upstream water ddfpﬂlzlo m, and

the downstream water depthh’l@ =5.The length of the computational region is 20@md the sluice gate is located

at x=200 m. The grid spacing is 1 m. The time step $s Eigure 3 shows the water surface position,Eigdre 4

shows the velocity distribution, 7.0s after theatoinstantaneous opening of sluice gate, wheresti@l line

represents the analytical solution and the ciraénts illustrate the predicted results. It can leersthat the
shallower the downstream water depth, then therfdise flood wave travels. The agreement betweemtalytical
and numerical solutions is satisfactory.
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Fig. 4 Veocity distribution
CONCLUSION

The MacCormack scheme can effectively simulateraipédly varying discontinuous water waves. The igipbi-
diagonal numerical scheme based on the MacCormamédictor-corrector technique along with a progose
technique to reduce the oscillations near the ificiaf discontinuity/shocks has good convergencd satability
when used to solve the discontinuous flow problérh& proposed mathematical model can effectivehukate the
open channel flows from supercritical to subcritistate or from subcritical to supercritical staed the 1D flood
waves due to instantaneous opening of sluice gatlum-break. The proposed model can be expandsithtdate
2D discontinuous flow problems.
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