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ABSTRACT 

Allergic diseases have been increasing all over the world, especially allergic respiratory diseases whose incidence 

is rising at an alarming. Less side effects and low cost of natural resources open new avenues for the treatment of 

various diseases including allergy and also using computational approaches minimizes experimental time in drug 

design. Therefore, this study aimed to target C-Chemokine receptor 3 (CCR3) as potential therapeutic target for 

Allergic respiratory diseases because it mediates the chemotactic response to binding of several chemokines which 

are highly expressed in the airways of asthmatic patients. The homology model of the target protein was built using 

MODELLER 9v16 and validated by Ramachandran plot. The modeled structure was virtually screened against 

natural product database by means of molecular docking approaches. Ligands with low binding affinity were 

further studied for their pharmacokinetics and drug-likeness properties. Those that are non-substrate to P-gp, 

inhibitors to CYP450 and with good drug-likeness properties are selected as the hits compounds. Binding analysis 

of the hits compounds and CCR3 was carried out using Autodock 4.2. Therefore, Ligands with good binding energy 

and pharmacokinetic properties are recommended to establish ideal lead candidates for the treatment of allergic 

airway diseases.  
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INTRODUCTION 

Rising of allergic respiratory diseases among different group of people has been observed. Causes of these diseases 

can be explained by the presence of biologic aeroallergens such as Pollen and House Dust Mites (HDM) which are 

able to stimulate the sensitization and symptoms of these diseases. Sensitization to different clinical symptoms and 

severity of the diseases; rhinitis, asthma and rhinitis with/without asthma may be caused by different types of 

aeroallergens [1]. Asthma is one of the threatening respiratory diseases affecting both children and adult and usually 

characterized by chronic airway inflammation. It is defined by the history of respiratory symptoms such as wheeze, 

shortness of breath, chest tightness and cough that vary over time and in intensity, together with variable airflow 

obstruction [2]. Chemokine receptors CCR3 is preferentially expressed by Th2 cells, mast cells, and eosinophils, all 

of which are involved in the pathogenesis of allergic diseases. Chemokines are associated with homeostatic cell 

migration and host defence, excessive production of chemokines has been implicated in the inflammatory 

components of many clinically important diseases including asthma [1,3-5]. Chemokine receptor CCR3 is expressed 

predominantly on eosinophils and mediates the chemotactic response to binding of several chemokines, among 

them, the three eotaxins (CCL11, CCL24, and CCL26) exhibit the highest specificity for CCR3. In addition, their 

expression levels frequently increase in allergic inflammatory sites. There is increased expression of these 

chemokines in the airways of asthmatic individuals [6]. The interactions of eotaxin, RANTES and MCP-1 with 

CCR3 (CD193) are responsible for the recruitment of basophils, eosinophils and mast cells [7,8] had pointed out that 

eotaxin-rich Th2 promoting pro-angiogenic progenitor cells interact with the lung vascular endothelium to initiate 
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angiogenesis and consequently eosinophilic airway inflammation. CCR3 was found to be highly expressed on sub 

mucosal endothelial cells in patients and murine model of asthma [8]. Antagonizing the chemokine receptor CCR3 

is of great advantage because they may block the combination of chemokines that act through the same receptor in 

sequence [9]. 

Several CCR3 antagonists have been developed for clinical studies in asthma, although so far all have failed for 

toxicological reasons. Consequently, antagonizing the CCR3 with small natural molecule is of interest as a possible 

therapeutic approach for the treatment of allergic asthma with fewer side effects. Here we screened a large natural 

database based on highest binding affinity to our target protein (CCR3), pharmacokinetic and drug-likeness 

properties using computational approaches. This can help in the selection of the optimal drug and avoid adverse 

drug reactions in clinical stage. Therefore applying computational methods accelerate various steps of drug 

designing and reduce the time as well as overall cost. 

EXPERIMENTAL SECTION 

Comparative Modelling 

The protein sequence of CCR3 (376 residues) was obtained from the NCBI (National Center for Biotechnology 

Information) with the accession number NP_847898.1 and saved in FASTA format for comparative modelling. The 

sequence was then subjected to protein-protein Basic Local Alignment Search Tool (BLASTp) against the Protein 

Data Bank for search of suitable template. The alignment of our protein target sequence and the template (4MBS) 

was generated using the Align2d command (it takes into account structural information from the template when 

constructing an alignment) in MODELLER 9v16 [10]. Among the five 3D structures developed, the one with low 

Discrete Optimized Protein Energy (DOPE) was chosen and further subjected for validation using PROCHECK [11] 

to determine the stereochemical quality of the protein structure by analysing residue-by-residue geometry and 

overall structure geometry. Superimposition, percentage similarity and RMSD calculations of the template (4MBS) 

and the predicted model of our protein target (CCR3) was performed using Chimera [12]. 

 

Binding Site Prediction 

Binding site of the CCR3 model was predicted by submitting the sequence to the COACH server. This server 

generate a 3D model from the submitted primary sequence using I-TASSER then using the COACH Algorithm the 

ligand-binding site prediction will be determine [13]. 

 

Virtual Screening and Molecular Docking 

After modelling the 3D structure of our target protein (CCR3) we adopt a structure-based VS technique for drug 

design. Firstly, the Zinc Natural Product database (Zinc is not commercial) was virtually screened against the model 

structure of CCR3 using Autodock vina [14] in PyrX virtual screening tool [15]. File format conversion and 

preparation like energy minimization of the ligands using mmFF94 force field optimization algorithm conjugate 

gradients at 200 total numbers of steps and generating the pdbqt files was performed in Open Babel tool [16]. The 

default Vina search space with a dimension angstrom of x: 25, y: 25 and z: 25 were not changed at the protein centre 

dimension of x: 158.876, y: 113.986 and z: 37.6045. The set of natural compounds with the lowest binding affinity 

were selected as compounds that can bind to our model protein. They were further submitted to the SwissAdme [17] 

for pharmacokinetics and drug-likeness properties. Therefore we filtered out the compounds that have the following 

pharmacokinetic properties; gastro-intestinal absorption, P-gp substrate, inhibition of CYP450 and drug-

likeness. The resulting compounds were lastly docked to the binding site of our target protein (CCR3) using 

Autodock 4.2 [18] visualization and hydrogen bonding analysis and 2D ligand receptor diagrams were performed 

using UCSF Chimera [19-25] and Maestro (Schrodinger USA). 

 

Ligand Interaction Analysis 

Ligand interactions of the docked hits compounds and known anti-asthmatic drugs were analyzed with the aid of 2D 

protein–ligand interaction diagrams (schrodinger) to compare the interactions of the target protein (CCR3) with hit 

ligands and known anti-asthmatic drugs. 

RESULTS AND DISCUSSION 

Comparative Modelling and Validation of Model 

Crystal structure of the CCR5 Chemokine receptor (PDB ID: 4MBS-A) was selected as the most appropriate 

template for our target sequence over the similar structures because it has the highest identity sequence of 46% and 
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less E-value of 1e-110. Among the five 3D structures developed, the one with lower DOPE (Discrete Optimized 

Protein Energy) score -44803.85547 was chosen because this was a standard scoring function in MODELLER. 

The structural superimposition of the template (4MBS) and target protein CCR3 has shown similarity in the 3D 

structures of both the template and the model (Figure 1). The RMSD calculated using the Chimera reveals that the 

overall RMSD between template and the model built was 0.656 Å (Tables 1 and 2). As indicated by the 

Ramachandran statistics (Table 3) 93.6% of the residues in the model structure were within the most favoured 

regions, 5.3% of the residues were in the Additional allowed regions, 1.2% of the residues were in the generously 

allowed regions and 0.0% of the residues were in the disallowed region and a usual score of all the G-factors. Based 

on these validations, the predicted model of CCR3 structure was adopted for further analysis (Figure 2). 

 

Binding Site Prediction 

The residues found to be functional active sites of CCR3 determined by COACH server is shown in the table below 

(Table 3). Residues with highest confidence score (C-score) of 0.21 and cluster size of 84 were selected for our 

binding residue. Among the consensus binding residues, the first residue number 111 was chosen for our grid 

dimension (X:162.649, Y:109.513, and Z:24.732) in docking simulation (Figure 3).  

 

 

Figure 1: (a) Superimposition of model structure CCR3 (red) and template PDB ID: 4MBS (cyan) with RMSD=0.656 Å (b) predicted 3D-

dimensional structure of CCR3 

Table 1: Superposition evaluations between template (4MBS) and CCR3 

Parameters Score 

Sequence alignment score 1084.6 

RMSD between 285 pruned atom pairs 1.751 Å 

Overall RMSD 0.656 Å 

SDM (cutoff 5.0) 14.379 

Q-score 0.634 

Sequence lengths 346 (4mbs) vs. 376 (ccr3) 

4mbs.pdb, chain A vs. CCR3.pdb 43.88% seq. Identity 

 



RM Adamu and BK Malik   J. Chem. Pharm. Res., 2017, 9(10):186-192  
_____________________________________________________________________________________________ 

 

189 
 

 

Figure 2: Ramachandran map showing distribution of residues for CCR 

Table 2: Ramachandran plot statistics 

Regions Residues Percentage 

Most favoured regions (A,B,L) 320 93.60% 

Additional regions allowed (a,b,l,p) 18 5.30% 

Generously allowed regions (~a,~b,~l,~p) 4 1.20% 

Disallowed regions (XX) 0 0.00% 

Non-glycine and non-proline residues 342 100.00% 

End-residues (excl. Gly and Pro) 2 
 

Glycine residues 17 
 

Proline residues 15 
 

Total number of residues 376 
 

G-Factors Score Average Score 

Dihedral angles:- 
  

Phi-psi distribution 0.34 

0.05 

Chi1-chi2 distribution -0.25 

Chi1 only 0.13 

Chi3 and chi4 0.32 

Omega -0.13 

Main chain covalent forces:- 
  

Main chain bond lengths -0.12 
-0.16 

Main chain bond angles -0.19 

OVERALL AVERAGE 
 

-0.03 

Table 3: Binding sites of C-Chemokine receptor 3 (CCR3) 

Rank 
C-

score 

Cluster 

size 

PDB 

hit 

Lig 

name 

Download 

complex 
Consensus Binding Residues 

1 0.21 84 4ea3A 0NN Rep, Mult 1,11,13,11,34,13,51,38,00,00,00,00,00,00,00,00,00,00,00,00,000 

2 0.08 29 4mbsA MRV Rep, Mult 6,21,11,11,41,34,13,51,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,000 

3 0.07 34 4dklA MPG Rep, Mult 9596172175179 

4 0.05 27 3zpqB 2CV Rep, Mult 2,40,24,42,53,25,62,59,00,00,00,000 

5 0.04 23 4ea3B 0NN Rep, Mult 11,11,14,13,11,34,13,50,00,00,00,00,00,00,00,00,00,00,00,00,00,000 

6 0.04 21 3oe8B ITD Rep, Mult 1,11,11,41,30,13,42,01,00,00,00,00,00,00,000 

7 0.02 12 4ldeA 1WV Rep, Mult 62,65,11,53,05,309 

8 0.01 5 2y03A 2CV Rep, Mult 2,36,23,92,63,266 

9 0.01 9 2y02B 2CV Rep, Mult 1,36,17,31,76,17,91,80,000 

10 0.01 4 3nyaA CLR Rep, Mult 77,95,99,102 
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Figure 3: Functional active site of CCR3  

Virtual Screening based on Binding Score and Pharmacokinetic Properties 

The docking studies of the ZINC Natural Products in PyRx virtual screening tool shows many Ligands that binds 

with our protein target at different conformations. Among which 532 Ligands with a highest binding energy ranges 

from -11.0 to -7.90 kcal/mol were filtered for pharmacokinetics and drug-likeness analysis in SwissADME [17] 

server, eight Ligands with high binding energy and passed the pharmacokinetics and drug-likeness analysis with 

high gastro-intestinal absorption, non-substrate to P-glycoprotein, inhibitors to some CYP450 (Table 4) were 

retained as the hits Ligands. It is of great importance in drug design to screened compounds that are non-substrate to 

P-gp at early stage to avoid drug-drug interactions. Likewise drug-likeness in drug design assesses qualitatively the 

chance for a molecule to become an oral drug with respect to bioavailability. A drug's effectiveness against a disease 

depends not only on its interaction with receptors but also its pharmacokinetics properties. 

Table 4: Pharmacokinetics and drug-likeness properties of the hits Ligands 

Ligands GI absorption P-gp substrate CYP450 inhibitor Lipinski Ghose Veber Egan Muegge 

1 High No CYP1A2, CYP2C19, CYP2C9, CYP3A4 Yes Yes Yes Yes Yes 

2 High No CYP1A2, CYP2C19, CYP2C9, CYP3A4 Yes Yes Yes Yes No 

3 High No CYP2C19, CYP2C9, CYP3A4 Yes Yes Yes Yes No 

4 High No CYP2C19, CYP2C9 Yes Yes Yes Yes Yes 

5 High No CYP2C19, CYP2C9, CYP3A4 Yes Yes Yes Yes No 

6 High No CYP1A2,CYP2C19, CYP2C9, CYP3A4 Yes Yes Yes Yes Yes 

7 High No CYP2C9, CYP3A4 Yes Yes Yes Yes No 

8 High No CYP1A2, CYP2C19, CYP2C9, CYP3A4 Yes Yes Yes Yes Yes 

 

Molecular Docking 

All Ligands shows a good binding affinity to the protein target, ligand one having the highest binding energy (-

10.01) and ligand 3 has the highest number of hydrogen bonds (Table 5). The interacting residues are the consensus 

binding residues determined by CORCH binding site prediction server (Figure 4). 

Table 5: Molecular docking analysis and ligand protein interactions of the hits ligands 

Ligands Binding energy (kcal/mol) Inhibition constant (Ki) Bond distance Interacting residues 

Ligand 1 -10.01 45.93nM 2.081Å Tyr 134, Cys204 

Ligand 2 -9.9 55.19nM 2.313 Å Cys204 

Ligand 3 -9.83 61.89nM 1.852 Å Ser205, Tyr62, Cys204, Tyr114 

Ligand 4 -9.78 67.33nM 1.932 Å Glu308 

Ligand 5 -9.57 96.08nM 2.148 Å Ser205 

Ligand 6 -9.33 144.02nM 2.112 Å Cys204, Tyr114 

Ligand 7 -9.31 150.2nM 1.986 Å Cys204, Tyr114 

Ligand 8 -9.09 217.55nM 2.173 Å Tyr114 

 



RM Adamu and BK Malik   J. Chem. Pharm. Res., 2017, 9(10):186-192  
_____________________________________________________________________________________________ 

 

191 
 

 

Figure 4: (a-h) 2D diagram of the protein-ligand interaction between CCR3 and natural ligands from zinc natural product database 
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CONCLUSION  

Blocking the CCR3 as a therapeutic target for the treatment of allergic respiratory diseases is of great interest. 

Determination of 3D structure of our protein target (CCR3) by comparative modelling helps us to understand it 

function in ligand binding. Exploring the natural compounds for search of ideal candidates by virtual screening 

methods using computational analysis reduces side effects, cost and time in drug discovery. Screening of the hits 

Ligands based on pharmacokinetic properties is of utmost important because this will reduce the failure of most 

drugs at the clinical stage. Therefore this study reveals five potential natural compounds that have good 

pharmacokinetic properties and binding energy to CCR3, hence suggested as possible drugs for the treatment of 

allergic respiratory diseases after undergoing further researches. 
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