Journal of Chemical and Pharmaceutical Research, 2014, 6(1):91-96

Research Article

ISSN: 0975-7384 CODEN(USA): JCPRC5

Hilbert algebras in commutative BCK-algebras and ideal

Qiuna Zhang^{1*}, Yan Yan², Huancheng Zhang¹ and Weixing Liu¹

¹Qinggong College, Hebei United University, Tangshan, China ²College of Science, Hebei United University, Tangshan, China

ABSTRACT

The notion of BCK-algebras was formulated first in 1966 by K. Iséki Japanese Mathematician. A BCK-algebra is an important class of logical algebras and was extensively investigated by several researchers. Here we well give the definition of Hilbert Algebras in commutative BCK-algebras and ideal.

Key words: Commutative BCK-algebra, Hilbert algebras, Ideal

INTRODUCTION

HILBERT ALGEBRAS IN COMMUTATIVE BCK-ALGEBRAS

Definition 1.1 A Hilbert Algebras $(H, \rightarrow, 1)$ in BCK-algebras is called commutative if and only if for any $x, y \in H$, it satisfies the following [1]:

$$(y \rightarrow x) \rightarrow x = (x \rightarrow y) \rightarrow y$$

Theorem1.2 For any Hilbert Algebras $(H, \rightarrow, 1)$ in BCK-algebras, the following conditions are equivalent [2]:

- (1) H is commutative,
- (x) $(y \rightarrow x) \rightarrow x \leq (x \rightarrow y) \rightarrow y$
- $(x \rightarrow y) \rightarrow y \rightarrow ((y \rightarrow x) \rightarrow x) = 1$

Theorem1.3 For any Hilbert Algebras $(H, \rightarrow, 1)$ in BCK-algebras, the following conditions are equivalent:

- (1) If $x \le z$ and $y \to z \le x \to z$, then $x \le y$,
- (2) If $x, y \le z$ and $y \to z \le x \to z$, then $x \le y$,
- (3) If $x \le y$, then $x = (x \rightarrow y) \rightarrow y$,
- (4) H is commutative,
- (5) If $y \rightarrow x=1$, then $((x \rightarrow y) \rightarrow y) \rightarrow x=1$

Proof: Obviously (1)=(2)

(2)
$$\Rightarrow$$
 (3) because $(x \to y) \to y \le y$, $((x \to y) \to y) \to y \le x \to y$, adding (2) we hold $x \le (x \to y) \to y$,

similarly
$$(x \rightarrow y) \rightarrow y \le x$$
, then $x = (x \rightarrow y) \rightarrow y$

$$(3) \Rightarrow (4) \quad \text{Since}(x \rightarrow y) \rightarrow y \leq x \text{, adding (3) we hold}$$

$$(x \rightarrow y) \rightarrow y = (((x \rightarrow y) \rightarrow y) \rightarrow x) \rightarrow x \text{ For } ((y \rightarrow x) \rightarrow x) \rightarrow ((x \rightarrow y) \rightarrow y)$$

$$=((y \to x) \to x) \to ((((x \to y) \to y) \to x) \to x) = (((x \to y) \to y) \to x) \to (((y \to x) \to x) \to x)$$

$$= (((x \to y) \to y) \to x) \to (y \to x) \le y \to ((x \to y) \to y) = 1$$

then $(y \rightarrow x) \rightarrow x \ge (x \rightarrow y) \rightarrow y$, by theorem 1.2, H is commutative

$$(4) \Rightarrow (1) \quad \text{If } x \le z \text{ and } y \to z \le x \to z \text{ , then } z \to x = 1, \quad (x \to z) \to (y \to z) = 1 \text{ by (4) we hold}$$

$$y \to x = y \to ((z \to x) \to x) = y \to ((x \to z) \to z) = (x \to z) \to (y \to z) = 1 \text{ then } x \le y$$

$$(3) \Rightarrow (5)$$
 Obviously $(3) \Leftrightarrow (5)$

Theorem1.4 A Hilbert Algebras $(H, \rightarrow, 1)$ in BCK-algebras is called commutative if and only if for any $x, y \in H$, it satisfies the following [3]:

$$(y \rightarrow x) \rightarrow x = (((y \rightarrow x) \rightarrow x) \rightarrow y) \rightarrow y$$

Proof: Necessity: because H is commutative, so $(y \rightarrow x) \rightarrow x = (x \rightarrow y) \rightarrow y$, by theorem1.3 (3) $x = (x \to y) \to y$, then $(y \to x) \to x = (((x \to y) \to y) \to y) \to y$, for $(y \to x) \to x = (x \to y) \to y$, $_{\text{then}}(y \rightarrow x) \rightarrow x = (((y \rightarrow x) \rightarrow x) \rightarrow y) \rightarrow y$

Sufficiency: Suppose
$$(y \to x) \to x = (((y \to x) \to x) \to y) \to y$$
, $x \le y$ then $x = 1 \to x = (y \to x) \to x = (((y \to x) \to x) \to y) \to y = (x \to y) \to y$ by theorem1.3 (3) H is commutative.

Theorem 1.5 A Hilbert Algebras (H, \rightarrow, l) in BCK-algebras is called commutative if and only if for any $x, y \in H$, it satisfies the following [4]:

$$(1)$$
 $(y \rightarrow x) \rightarrow x = (x \rightarrow y) \rightarrow y$

$$(2)$$
 $z \rightarrow (y \rightarrow x) = y \rightarrow (z \rightarrow x)$,

$$(3)$$
 $x \rightarrow x = 1$,

$$(4)$$
 $1 \rightarrow x = x$

Proof: Necessity is obviously.

Sufficiency: first proof $(H, \rightarrow, 1)$ is a Hilbert Algebras in BCK-algebras.

by
$$z \rightarrow (y \rightarrow x) = y \rightarrow (z \rightarrow x)$$
 we hold $y \rightarrow ((y \rightarrow x) \rightarrow x) = (y \rightarrow x) \rightarrow (y \rightarrow x) = 1$ BCI-2 holds.

If
$$y \to x = y \to x = 1$$
, by (1), (4) then $x=1 \to x = (y \to x) \to x = (x \to y) \to y = 1 \to y = y$, BCI-4 holds. by (1) (2) then

$$(z \to x) \to (y \to x) = y \to ((z \to x) \to x) = y \to ((x \to z) \to z) = (x \to z) \to (y \to z)$$

$$so(z \to x) \to (y \to x) = (x \to z) \to (y \to z)$$

$$suppose x = y, \quad z = 1, \quad then x \to 1 = (1 \to x) \to (x \to x) = (x \to 1) \to (x \to 1) = 1$$
BCK-5 holds.

for (*) (4) and BCK-5, thus

$$(y \rightarrow z) \rightarrow ((z \rightarrow x) \rightarrow (y \rightarrow x))$$

 $= (1 \rightarrow (y \rightarrow z)) \rightarrow ((x \rightarrow z) \rightarrow (y \rightarrow z))$
 $= ((y \rightarrow z) \rightarrow 1) \rightarrow ((x \rightarrow z) \rightarrow 1)$
 $= 1 \rightarrow 1$
 $= 1$

BCI-1 holds.

$$(3)$$
 $x \rightarrow x = 1_{is BCI-3}$

thus, $(H, \rightarrow, 1)$ is a Hilbert Algebras in BCK-algebras.

finally, by (1)
$$(y \rightarrow x) \rightarrow x = (x \rightarrow y) \rightarrow y$$
,

So the Hilbert Algebras $(H, \rightarrow, 1)$ in BCK-algebras is commutative.

COMMUTATIVE IDEAL

Definition 2.1 A non empty subset H_0 of H is called commutative ideal of Hilbert Algebras $(H, \rightarrow, 1)$ in BCK-algebras, if it satisfies [5]:

$$\begin{array}{l} (1) & 1 \in H_0 \\ (2) & \text{If } z \to (y \to x) \in H_0 \\ ((x \to y) \to y) \to x \in H_0 \end{array}, \text{ then for any } x,y,z \in H_0 \text{ it satisfies the following }$$

Obviously, H is a commutative ideal of H, we call it trivial commutative ideal.

Example 2.2 Let
$$H = \{1,2,3,4\}$$
, the ordinary operation \rightarrow is given by:

\rightarrow	1	2	3	4
1	1	2	1	4
2 3	1	1	3	4
3	1	2	1	4
4	1	1	3	1

then $(H, \rightarrow, 1)$ is a Hilbert Algebras in BCK-algebras, $\{1,2\}$ is an ideal, but it not a commutative ideal

Theorem 2.3 A commutative ideal of a Hilbert Algebras in BCK-algebras must be an ideal, but the inverse is does not hold.

Proof: Suppose
$$H_0$$
 is a commutative ideal, if $y \to x \in H_0$ and $y \in H_0$, then $y \to (1 \to x) \in H_0$, $y \in H_0$, by $((x \to y) \to y) \to x \in H_0$ we hold $x = ((x \to 1) \to 1) \to x \in H_0$, so H_0 is an ideal From Example 2.2 ideal is not a commutative ideal.

Theorem 2.4 If H_0 is a commutative ideal if and only if for $y \to x \in H_0$, the following hold:

$$((x \rightarrow y) \rightarrow y) \rightarrow x \in H_0$$

proof: Necessity. If H_0 is a commutative ideal, $y \to x \in H_0$, then $1 \to (y \to x) \in H_0$, $1 \in H_0$

By the definition of commutative ideal $((x \to y) \to y) \to x \in H_0$ holds Sufficiency: Suppose H_0 is an ideal, and it satisfies $((x \to y) \to y) \to x \in H_0$, if $z \to (y \to x) \in H_0$, $z \in H_0$, by the definition of ideal $y \to x \in H_0$ holds, by $((x \to y) \to y) \to x \in H_0$, thus H_0 is a commutative ideal.

 $\begin{array}{ll} \textbf{Theorem 2.5 Suppose} & H_0 \text{ is an ideal of a Hilbert Algebras in BCK-algebras and} & x \in H_0 \text{ if} & y \leq x \text{ then } y \in H_0 \text{ .} \\ \text{Proof:} & y \leq x \text{ implies} & x \rightarrow y = 1 \in H_0 \text{ .Combining} & x \in H_0 \text{ and the definition of ideal of a Hilbert Algebras in BCK-algebras we obtain} & y \in H_0 \text{ .} \\ \text{BCK-algebras we obtain} & y \in H_0 \text{ .} \\ \end{array}$

Theorem 2.6 For any Hilbert Algebras an implicative ideal must be positive implicative ideal but the inverse does not hold.

Proof: Suppose H_0 is an implicative ideal and $z \to (y \to x) \in H_0$ $z \to y \in H_0$ Since $(z \to y) \to (z \to x) \le y \to (z \to x) = z \to (y \to x) \in H_0$

By Theorem 2.5 we get $(z \rightarrow y) \rightarrow (z \rightarrow (z \rightarrow x)) \in H_0$

Combining $z \to y \in H_0$ and making use of H_0 is an ideal we have

 $z \to (z \to x) \in H_0$

 $\underset{As}{((z \to x) \to x) \to (z \to x) = z \to (((z \to x) \to x) \to x) = z \to (z \to x) \in H_0}$

It follows that $1 \to (((z \to x) \to x) \to (z \to x)) \in H_0$ combining $1 \in H_0$ we obtain $z \to x \in H_0$ this means that H_0 is a positive implicative ideal.

Theorem 2.7 For any Hilbert Algebras an ideal H_0 is implicative if and only if for all $x, y \in H_0$ if $(x \to y) \to x \in H_0$ implies $x \in H_0$.

Proof: Sufficiency: Suppose H_0 is an ideal. If $z \to ((x \to y) \to x) \in H_0$ and $z \in H_0$. By the definition of ideal we have $(x \to y) \to x \in H_0$ it follows that $x \in H_0$.

Necessity is evident.

Theorem 2.8 Theorem2.2 Suppose H_0 is a nonempty subset of Hilbert algebras in positive implicative BCK-algebras H then the following conditions are equivalent:

- (1) H_0 is an ideal of Hilbert algebras in positive implicative BCK-algebras;
- (2) H_0 is an ideal and for any x, y in H $y \rightarrow (y \rightarrow x) \in H_0$ implies $y \rightarrow x \in H_0$;
- (3) H_0 is an ideal and for any x, y, z in H

 $z \rightarrow (y \rightarrow x) \in H_0$ implie $(z \rightarrow y) \rightarrow (z \rightarrow x) \in H_0$:

(4) $1 \in H_0$ and $z \to (y \to (y \to x)) \in H_0, z \in H_0$ imply $y \to x \in H_0$

Proof. (1) \Rightarrow (2) If H_0 is an ideal of Hilbert algebras in positive implicative BCK-algebras by H_0 is an ideal. Suppose $y \rightarrow (y \rightarrow x) \in H_0$ since $y \rightarrow y = 1 \in H_0$ by definition $y \rightarrow x \in H_0$ 2holds.

$$(2) \Rightarrow (3) \underset{Assume(2)\text{and}}{\text{Assume}(2)\text{and}} z \rightarrow (y \rightarrow x) \in H_0$$

$$z \rightarrow (z \rightarrow ((z \rightarrow y) \rightarrow x)) = z \rightarrow (z \rightarrow (y \rightarrow x))$$

$$= (z \rightarrow z) \rightarrow ((z \rightarrow y) \rightarrow (z \rightarrow x)) = 1 \rightarrow (z \rightarrow (y \rightarrow x)) = z \rightarrow (y \rightarrow x) \in H_0$$
it follows that
$$z \rightarrow (z \rightarrow ((z \rightarrow y) \rightarrow x)) \in H_0 \quad \text{by}(2) \quad z \rightarrow ((z \rightarrow y) \rightarrow x) \in H_0.$$

$$\underset{As}{\text{As}} (z \rightarrow y) \rightarrow (z \rightarrow x) = z \rightarrow ((z \rightarrow y) \rightarrow x) \quad \text{then} \quad (z \rightarrow y) \rightarrow (z \rightarrow x) \in H_0 \quad \text{which is}(3).$$

$$(3) \Rightarrow (4) \quad \text{It's clear that } \quad 1 \in H_0 \quad \text{If } \quad z \rightarrow (y \rightarrow (y \rightarrow x)) \in H_0, z \in H_0 \quad \text{then}$$

$$y \rightarrow (y \rightarrow (z \rightarrow x)) = y \rightarrow (z \rightarrow (y \rightarrow x)) = z \rightarrow (y \rightarrow (y \rightarrow x)) \in H_0$$

$$z \rightarrow (y \rightarrow x) = y \rightarrow (z \rightarrow x) = 1 \rightarrow (y \rightarrow (z \rightarrow x)) = (y \rightarrow y) \rightarrow (y \rightarrow (z \rightarrow x))$$

$$= y \rightarrow (y \rightarrow (z \rightarrow x)) \in H_0$$
since
$$H_0 \text{ is an ideal and } z \in H_0 \text{ thus } y \rightarrow x \in H_0 \text{ (4)holds.}$$

$$(4) \Rightarrow (1) \quad \text{First proof } H_0 \text{ is an ideal. Suppose } y \rightarrow x \in H_0 \text{ and } y \in H_0 \quad y \rightarrow (1 \rightarrow (1 \rightarrow x)) \in H_0$$
and
$$y \in H_0$$

$$\text{By}(4) \quad 1 \rightarrow x = x \in H_0 \quad H_0 \text{ is an ideal. Next let } z \rightarrow (y \rightarrow x) \in H_0 \text{ and } z \rightarrow y \in H_0$$

$$(z \rightarrow y) \rightarrow (z \rightarrow (z \rightarrow x)) = z \rightarrow (y \rightarrow (z \rightarrow x)) = y \rightarrow (z \rightarrow (z \rightarrow x))$$

$$= y \rightarrow ((z \rightarrow z) \rightarrow (z \rightarrow x)) = y \rightarrow (1 \rightarrow (z \rightarrow x)) = y \rightarrow (z \rightarrow (z \rightarrow x))$$

$$= y \rightarrow ((z \rightarrow z) \rightarrow (z \rightarrow x)) = y \rightarrow (1 \rightarrow (z \rightarrow x)) = y \rightarrow (z \rightarrow x)$$

$$= z \rightarrow (y \rightarrow x) \in H_0 \quad \text{then} \quad (z \rightarrow y) \rightarrow (z \rightarrow (z \rightarrow x)) \in H_0.$$

Combining $z \to y \in H_0$ and using(4) $z \to x \in H_0$. This have proofed that H_0 is an ideal of Hilbert algebras in positive implicative BCK-algebras.

Theorem 2.9 Let $(H, \to, 1)$ is a Hilbert Algebras in BCK-algebras, then the nonempty subset H_0 of H is an implicative ideal if and only if it is both a commutative ideal and positive implicative ideal.

Proof: Suppose H_0 is an implicative ideal, by Theorem 2.6, an implicative ideal must be positive implicative ideal now we proof H_0 is also commutative.

To do this Let $y \to x \in H_0$, Since $((x \to y) \to y) \to x \le x$, we have $x \to y \le (((x \to y) \to y) \to x) \to y$ Denote $u = ((x \to y) \to y) \to x$, we obtain $(u \to y) \to u = ((((x \to y) \to y) \to x) \to y) \to (((x \to y) \to y) \to x)$ $\le (x \to y) \to (((x \to y) \to y) \to x) = ((x \to y) \to y) \to ((x \to y) \to x)$ $\le y \to x \in H_0$

Hence, $(u \to y) \to u \in H_0$ Making use of Theorem 2.7we get $u \in H_0$, so $((x \to y) \to y) \to x \in H_0$. This proof that if $y \to x \in H_0$ implies $((x \to y) \to y) \to x \in H_0$, Therefore H_0 is a commutative ideal. Sufficiency: Suppose H_0 is both a commutative ideal and positive implicative ideal, Let $(x \to y) \to x \in H_0$, Since $(x \to y) \to ((x \to y) \to y) \le (x \to y) \to x$, $(x \to y) \to ((x \to y) \to y) \in H_0$, Making use of Theorem 2.8 (1) we hold $(x \to y) \to y \in H_0$

Moreover, since $y \to x \le (x \to y) \to x$, we obtain $y \to x \in H_0$ By Theorem 2.4 we hold $((x \to y) \to y) \to x \in H_0$, combining $(x \to y) \to y \in H_0$ we obtain $x \in H_0$. Therefore H_0 is an implicative ideal.

Theorem 2.10 Suppose H_1 and H_2 are ideals of H_1 let $H_1 \subseteq H_2$, if H_1 is commutative then so is H_2 .

Proof: Let
$$y \to x \in H_2$$
, denote $u = y \to x$, then $y \to (u \to x) = u \to (y \to x) = 1 \in H_1$
Using the commutative of H_1 and Theorem 2.4, we have $(((u \to x) \to y) \to y) \to (u \to x) \in H_1$
because $H_1 \subseteq H_2$, then $u \to ((u \to x)((\to y) \to y) \to x) = (((u \to x) \to y) \to y) \to (u \to x) \in H_1$
Combining $u \in H_2$, we have $(((u \to x) \to y) \to y) \to x \in H_2$ As $((((u \to x) \to y) \to y) \to x) \to (((x \to y) \to y) \to x) \to (((x \to y) \to y) \to x) \to (((u \to x) \to y) \to y) \to x)$

$$\leq ((x \to y) \to y) \to (((u \to x) \to y) \to y) \to x \in H_2$$

$$\leq (u \to x) \to y \to x \in H_2$$
We obtain $((x \to y) \to y) \to x \in H_2$, thus H_2 is a commutative ideal.

REFERENCES

- [1] Liu Fang, Li Jizu. Shanxi college of mining and technology. 1997, 15(2), 214-217.
- [2] Jie Meng, Jun Y, Kim H.. Fuzzy Sets and Systems. 1997, (89), 243-248.
- [3] Yang H.w. Int. J. Appl. Math. Stat. 2013, 39(9), 188-195.
- [4] Zhu Qi-quan. Fuzzy Systems and Mathematics. 2002, 3(16), 32-38.
- [5] Zhang B.. Int. J. Appl. Math. Stat. 2013, 44(14), 422-430.