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ABSTRACT

The problem of H, static output feedback sliding mode control for a class of nonlinear delay systems with norm-

bounded uncertainties and external disturbance is considered in this paper. Based on Linear matrix inequality
approach, a new approach Iis given to design the static output feedback sliding mode surface. Then, a sliding mode
controller is obtained which mafke the systems states reach the sliding mode surface in finite time. A/l the conditions
are expressed in terms of LML, Finally, a numerical example is given to demonstrate the validity of the results.
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INTRODUCTION

Time delay is frequently encountered in various engineering, communication, and biological systems[1]. The
characteristics of dynamic systems are significantly affected by the presence of time delays, even to the extent of
instability in extreme situations. Therefore, the study of delay systems has received much attention, and various
analysis and synthesis methods have been developed over the past years[2,3].

As is known, based on using of discontinuous control laws, the sliding mode control approach is known to be an
efficient alternative way to tackle many challenging problems of robust stabilization. Li , et al. considered the
problem of adaptive fuzzy sliding mode control for a class of nonlinear time delay systems[4]. Kown, et al.gave an
improved delay-dependent condition to design robust controller for uncertain time-delay systems. Based on LMI
approach, Chen, et al. considered the problem of exponential stability for uncertain stochastic systems with multiple
delays[5]. Xia, et al. and Qu, et al. designed the robust sliding mode controller for uncertain systems with delays by
using LMI approach[6,7]. The problem of discrete-time output feedback sliding mode control for time-delay
systems with uncertainty is researched[8]. But the static output feedback sliding mode control for delay systems has
never been presented.

This paper presents the problem of /7, static output feedback sliding mode control for a class of nonlinear delay

systems with norm-bounded uncertainties and external disturbance. Based on Linear matrix inequality approach, a
new approach is given to design the static output feedback sliding mode surface. Then, a sliding mode controller is
obtained which make the systems states reach the sliding mode surface in finite time.

PROBLEM FORMULATION
Consider the following nonlinear systems with delay
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&) = (A+AAD) (7)) + (A, + AA (1)) x(2— d) + Bu(?)+ B, o(7)

D)= Cx2) (1)
X)) =w(2) -d<r<0

where X(7) € R’ is system state, #(7) € R” systems control input, (7) € £’ systems output , & is a system
state delay. v (?) is the given initial state on

[-d,0]. A€ R, 4, € R"",Be R, B, € R and C'€ R”" are known constant matrices, and 5 has full

column rank. AA(7)e R™ and A4, (7)€ R”" are unknown matrices representing the uncertainties and
satisfying

[AA(7) A4, ()]= GO H H,] (2)
where G, /7 and /7, are constant matrices with appropriate dimensions, Z)X(7) is unknown matrix satisfying
DD/
(7) is external disturbance and satisfying
o)l p(2)
where p(7) is known function on[—«,0].

al , %
With Singular Value Decomposition of Z, 5= [le Uz] 0 V', nonsingular transformation 7" = - is

4

y:3

ol
Bw2

With the transformation z(7) = 7x(7) , the systems ( 1) can be rewritten

0
constructed for systems ( 1 ) to make 75 = {B }Tﬂw 2{
2

| &)

0 L&(z)

=(TAT "+ TAADT 2D+ (TAT " + TAA(HT ) 2(¢- d)
+ 7Bu(f)+ 7B,w(7)

} = 7(A+ M) x(D) + T(A, + A (D)) Xt — d) + TBu(H)+ TB,0(7)

Inserting ( 2 ) into the above formulation, we obtain

&) = (U AU, + U GDHU,)2(0) + (UL AU, + U GDHU,) z,(1) + (UL 4,0,
+ULGDH U,)z,(t~ d)+ (UL AU, + UL GDH U,) 2, (¢~ d) + B,,00(2)

3)
(1) = (U] AU, + U] GDHU,) (1) + (U] AU, + U GDHU,) 2, (1) + (U] 4,0,
+ U GDH )zt~ d) + (U] 40, + U GDH ;) z, (1~ d) + Bl D)+ B,,0(0)
For the systems ( 3 ) , selecting the static output feedback sliding mode surface as following
o () =317 “4)
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With

o (2) =S = SCT ' 2($) = SAU, U)z(5)=SCU,z(H)+SCU,z,(H)=0

by the assumption that SC/; is nonsingular, we obtain

2,()=—(SCU,))"' SCU,z,(?) = —FZz,(?)

Where /= (SCU,)™"' SCU,.

Inserting the above formulation into the systems ( 3 ) , the sliding mode equation is obtained

(1) = Az (D) + 4,5 (1 d)+ B, 0() 5)

A= U] AU, -~ U,F)+ U] GDH(U, - U, F)
A, = UL AU, ~U,F)+ U, GDH (U, - U,F)

RESULTS

Lemmal[2] For known constant &€ >0 and matrices 2, Z, / which satisfying #7 # </ , then the following
matrix inequality is hold

DEF+E'F'D <eDD +¢'E'E

Lemma2[9]The LMI
{Y(x) W(x)}
>0
R

is equivalent to
R(x)>0, () - W ()R ()W (1) >0
where ¥(x)= Y7 (x),R(x)= R (x) depend on x .

Theoreml For the given constants ¢ > 0, the sliding mode equation is stable and the /7, performance index of

system y is singular values of X' RX" , if there exist positive-definite matrices %’&?ﬁ’ e R

(n=m)

matrices X', Vo, Mo, Mo e R-"*"") | constants p,, P, and matrices Z € R such that the following

linear matrix inequality holds

Z1‘11 z12 Z1‘13 _BleT d/%) Z16
* Xy, Xy _PszlXT d/%) 2o
* * 0 Ly —p3 8,4 ’ d/%) 0

<0 (6)
* * * R 0 0
* * * * —d&) 0
* * * * * —o/
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where

S, = Mo+ M- 40X -U0,2) - (U, X -0,2) AU, +al] GGV,

%, = M- M- U 40X -0,2)- p,(U,X -U,2) AU, +ap,U] GG U,
S,=P My X7 — p (UX -U2Z) AU, +opUl GG'U,

L = (X -2y’

Sy, == Mo— M — p, Ul 4, (U, X -~ U,2)~ p,(U, X = U,.2) AU, +ap; U] GGV
Sy = =Mt p, X7 = p (U, X = U,2) 45U, +ap,p, U} GGV,

= (X -U2) ]

S, =d% p X7 + p, X +ap U GGTU,

We can Design the sliding mode surface
o (7)) =317

Where matrix S satisfying
SC(UF-U,))=0,F= X7

Proof. Selecting Lyapunov functional such as

0 ¢t
V== (0 P50+ [ [ &(5)OK(s)dsdd
Where 2, O are positive-definite matrices of Theorem].

Then, along the solution of system (5) we have

Bty =22 (0 P& + a8 (D OK() - [ B (5)0&(5)ds+2(2 (1),

+ 2 (=N, + 5 OV H0) -zt~ d)- [ Bls)ds)
+ 2z ()M, + 2 (1= )M+ B () M) Az5(0) = A,5(1= ) + £(2)

<25 () PR+ dE (VOK() - || B (5)OR(s)ds+ 2 ()N, + 2 (1= ),
+ 2 (V& (0~ 20— ) + 2 ()M, + 2 (1= d) M, + & (DM, )~ Az (2)
—4,5(1-d) - B,0() + &)+ d(Z ()N, + Z (1= )N, + 2 (O V)T ( ()M
+Z =)V, + L (OM) + [ & (5)O0B(s)ds -1’0 (Do) +77 6 (D ()

= & (VEEWD) +770" (Do (1)

where NV, NV, , NV, , M|, M, , M, are constant matrices with appropriate dimensions to be confirmed.
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E0=[Z0) Z-d) B0 o' (0]

[x1 [1]

[1]

E, B, & -MBEB,
I R -M,B,
* * By —-MB,

* * * -7

W= N AM =M A=A M +dNO'N

p =N =N =AM~ M A+ dN.O ]
=P+ N =AM+ M+ dN O V]

n ="M _/\/27_/1/21_44_25/]/27+d/\/zglj\/27
23 =—M7—25M7+M2+d/\/2gl/\/37

[1]

The inequality
=<0

is equivalent to

» MUG
N, MU G
2=0+d| O M NN o) D~ UF) H (U= GF)
3 3
0 0
o
MULG
MU' G
0 O|-[#(U,-UF) HU-UF) 0 0] 0| 727271 <0
] [ ( 2 1[7) d( 2 IF) ] MU;TG
0
where
®11 ®12 ®13 _/][chol
O = * ®22 ®23 _MZBwl
* * ®33 _Mﬂwl
* * * —7/2]

3 =d0+ M, +/][37+a’/\/;Q1/\/;T

0, = N, + N/ ~ MU AU, ~ UF)
Uy~ GFY A UM

®12 = /VzT _M _/VleTAd(% - 0'1[7)
—(U,-UF) AU M

O, = P+ N, + M —(U, - U,F) A UM

®22 = _jvz - jvzf _MZO'ZTAa’(UvZ - Ulﬂ
—(U, - UF) 4,U0,M;

= =N, + M, — (U, = UF) 4;U,M7

0,
®33 = ‘/Q+/I/3 +/V37
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With lemmal , we know that the following inequality holds for given constantcot > ()

MU G il
e r o | MUG
| argrg[PAGO8 AU 0 O[O0 H G0 0 LD
. 0

7~ 7 ~17
MUIG | MULG
MULG|| MG

_ 7
<o'[#U-UP H-UM 0 O [HG-0N HC=0M 0 Ola|’ 5 IR

0 0
With lemma2 , we know that the inequality ( 7 ) is equivalent to _ _
_An Ay A13 _/Vlﬂwl dM A16 |
* Ay A23 _Mzﬂwl djvl Ay
A= * * Ay _/]/325)@1 djvl <0 (8)
* * * v/ 0 0
* * * * -dQ 0
| * % % % % —OL[_
A, = N+ N = MU AU, = U )= (Uy = UFY A" UM +a MU GG UM
Ay = Ny = N, = M UL AU, = U F) = (U, = U FY AU, MT +aMUL GG UMY

A= P4 NV, 4 My~ (U= U A UM +aM UL GG UMY

Ay = (U, - OIF)THT

Myy == Ny = N = MU A, ~ U ) ~(Uy - G FY AU ME + MU GG UM

By = =N + M, ~(Uy = U Y ALUMY +a MU GG UM,

Ay =(U, - Ulﬁ)rﬁj

Ay = dO+ M, + M +aM UGG UM,

Pre- and Post-multiplying the inequality (8) by

dl'ag{Mo_l,Mgl,Mgl,Mgl,Mgl,/} and dl’dg{MO_T,MO_T,M(;T,M(;T,M(;T,/} , by giving some
transformations M, = M,, M, = p,My, M, = p,M,, X = M;', Z = FX", = XPX" = XOX7

R=y XX, where P, P are constants to be obtained, we know that the inequality ( 8 ) is equivalent to
(6).

From the inequality ( 6) , we obtain

B < —ET(NEE(N) +7 0’ (D7)

therefore

=10 <[ & (9ZE(Ms + [ 7o (s)o(s)ds
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If #— 0 , with the initial condition, we obtain

A @], 2 ()7 (s <2, @) &7 (s <7? [ 0 ()er(5)ds

Therefore

120, s —L— ()],
NG

If o(7)=0 , we can obtain Fg{z‘) <0 , the sliding mode equation is stable.

Theorem 2 For the nonlinear delay systems ( 1 ) , with the controller

SC V4
ISELSD o+ 622, )
o] (9)

(?) = ~(SCB) [ SCAx(1) + SCA, (1 — d) +
+[18, | (1)) + ko (2) + e.5igno (7)]

Where £, are constants satisfying £#>0,& >0 , then the systems states will reach the sliding mode surface

(4 ) in finite time.

Proof. Along the solution of system (1) we have
o (&) =" (HSC(A+ A D)+ (HSC(A, + A ) (2~ d)+c 7 (H)SCB,w(?)
S OUSCUOD ( ) 4 Gz, |
o)l (10)
+[| B, || p(2)) 0" (ko (1)~ o7 (He signo (2)
<-c’ (ko () - (Hesigno () <0

—o"()SCA(?)— " () SCA,X(¢— d)

With the controller ( 9 ) and the above equation ( 10 ) , we know that the reaching condition is satisfied.
CONCLUSION

This paper considers the problem of /7 static output feedback sliding mode control for a class of nonlinear delay

systems with norm-bounded uncertainties and external disturbance. A static output feedback sliding mode surface is
designed by using linear matrix inequality approach. Then the sliding mode controller is designed to make the states
reach sliding mode surface in finite time.
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