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ABSTRACT

Protein classification is a well established resgaffield concerned with the discovery of molecuf@'sperties
through informational techniques. Graph-based kirn@ovide a nice framework combining machine |&agn
techniques with graph theory. In this paper weaddtice a novel graph kernel method for annotatingctional
residues in protein structures. A structure- isfimodeled as a protein contact graph, where nedesspond to
residues and edges connect spatially neighborisgltes. In experiments on classification of grapddets of pro-
teins, the method based on Weisfeiler Lehman siopeth kernel with complement graphs outperforrotter
state-of-art methods.

Keywords:. Protein classification, Machine learning, Graphnets, Shortest path, Weisfeiler-Lehman.

INTRODUCTION

Kernel methods are an important method which iselyidused in statistical learning theory[1]. Kernékslp to
adapt classification regardless how classificafierforms. That is to say, kernels act like an fas¥ between clas-
sification tools and data sets via Support Vect@cMnes[2]. Early studies on kernel methods ddaibst exclu-
sively with vector-based descriptions of input dathis procedure, though convenient, does not advedfectively
capture topological relationships inherent to th¢adtherefore, the power of the learning proceay be insuffi-
cient. Haussler[3] was the first to define a pnhed way of designing kernels on structured objebts so-called R-
convolution kernel. Over recent years, kernelstomctured objects such as strings and trees[4hamies in graphs
and on graphs have been defined. Graphs are nadatal structures to model such structures, withesod
representing objects and edges the relations batttean[5]. In this context, one often encounters tyuestions:
“How similar are two nodes or edges in a given gfd@nd “How similar are two graphs to each other?”

For instance, in protein classification[6], one hiigvant to predict whether a given protein is amyame or not.
Computational approaches infer protein functionfibging proteins with similar sequence, structuse chemical
properties. A very successful recent method is ealehthe protein as a graph(see Fig 1), and assmitar func-

tions to similar graphs[4]. Generally speaking,pyr&ernels are based on the comparison of grapstrsiehures via
kernels. Several different graph kernels have lsdimed in machine learning which can be categdrinto three
classes: graph kernels based on walks[8] and @4ttgiaph kernels based on limited-size subgrafifi[1], and

graph kernels based on subtree patterns[8][12]ddfme a graph kernel, some requirements are putafd: the

kernel should be measurable on the issue of sityilior graph; second, it should be computablenrnaaceptable
time; third, it should be positive definite; fourtlh should be applicable widely. However, soméhaf kernels can-
not meet all of these requirements. In this paperpresent a new graph kernel that measure sityilaased on

Weisfeiler-Lehman shortest path in undirected gsapiat are computable in polynomial time, that@ositive se-
midefinite.
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protein secondary sequence graph structure
structure elements

Fig. 1: Illustration of graph generation from PDB protein file
EXPERIMENTAL SECTION

2.1 Some Definitions on Graph Theory
We define a graph G as a triplef ,E,l), whereV is the set of verticed: is the set of undirected edges, and

[ :V = 2 isafunction that assigns labels from an alphabeto nodes in the graph. The neighborhdddv) of
a nodeV is the set of nodes to which is connected by an edge, thatN{V) = {v"(v,v') g E}. We assume that

every graph ha$l nodes,m edges, and a maximum degreecbf

The adjacency matri of G is defined as follows:

1 if (vi,v;)OE,
[A]ij = .
0 otherwise

whereV; andV; are nodes ifG . Labels can be added on nodes or edges, theds tabeeferred as attributes.

A walk W of length K —1 in a graph is a sequence of nodgsV, [V, where(v,_,,V,)JE for 1<i<K.
A path p is a walk without same nodes in the sequence.

A cycleis a walk withv, =V, ,a simple cycle does not have any repeated noadepeforV, .

SupposeG(V, E) is a graph with vertex sdf and edge seE . Then, its complemeﬁ_j‘a(\/,E) is a graph with the

same vertex sé¥ , but with a different edge s& =V xV/ \ E.. In other words, the complement graph is made up
of all the edges missing from the original graph.

2.2 Graph Isomor phism
Graph similarity or isomorphism[13] is the mostesggal problem for learning tasks like clusteringdaclassifica-

tion on graphs. In graph theory, an isomorphismraphsG and H is a bijection between the vertex sets(af
andH : f :V(G) - V(H), such that any two verticas and V of G are adjacent i if and only if f(u)

and f(Vv) are adjacent iH . Graph isomorphism problem is neither known t@blynomial-computable, nor NP-
hard[14].

2.3 The Weisfeiler-Lehman Test of | somor phism
Our method uses concepts from the Weisfeiler-Lehreest of isomorphism[15][16], more specifically ifs

dimensional variant. Assume we are given two graphsnd H and we would like to test whether they are iso-
morphic. The 1-dim Weisfeiler-Lehman test procegdgerations, which we index bl and which comprise the
steps given in Algorithm 1.

The key idea of the algorithm is to augment theentadbels by the sorted set of node labels of neighg nodes,
and compress these augmented labels into new,labets. These steps are then repeated until tihe label sets of

G and H differ, or the number of iterations reach@s If the sets are identical afteiterations, it means that either
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G and H are isomorphic, or the algorithm has not been tbtietermine that they are not isomorphic. See2Fig
for an illustration of these steps.

Algorithm 1.0ne iteration of the 1-dim. Weisfeiler-Lehman tesgraph isomorphism(1968)
1. Multiset-label determination

= Fori =0,setM, (V) =1,(v).

= For i >0, assign a multiset-labd¥l, (V) to each nodev in G and H which consists of the multiset
{1.uONW}.

2. Sorting each multiset

= Sort elements irfM, (V) in ascending order and concatenate them intoregs8i(V) .

= Add |,_; (V) as a prefix tos (V) and call the resulting string, (V) .
3. Label compression
= Sort all of the stringss (V) for all V from G and H in ascending order.

* Map each stringS (V) to a new compressed label, using a functibriY. — X such that

f(s (V) = f(s (W) iff s (v) =s(W).
4. Relabeling
= Setl, (V) = f(s (v)) for all nodes inG and H .

- Ist iteration
Given labeled graphs G and H Step 1 and step2:multiset-label

e determination and sorting

2 oD OGRS

Ist iteration Ist iteration
step 3:label compressing step 4:relabeling

12 ——= 6 34 ——>10 (13) (7 (® (13)

125——=> 7 4,1235 —=>11 ‘ ‘

1,45 ——=> 8 42335 ——> 12 @ 9 m e
2,145—> 9 5,124 ——> 13 @ @ G @ @ H

Fig. 2: Illustration of the 4 steps of oneiteration of the computation of the Weisfeiler-L ehman test of isomor phism

2.4 Weisfeiler-Lehman Sequence Graphs
Define the Weisfeiler-Lehman graph at heiglof the graphG = (V,E,I) as the grapiG, = (V,E,I;). We call
the sequence of Weisfeiler-Lehman graphs,

{G.GIG}={(V E ).V EL) IV El)},

where G, = G, the Weisfeiler-Lehman sequence up to heightf G . G, is the original graphG, = r(G,) is
the graph resulting from the first relabeling, aadon.

2.5 Weisfeiler-Lehman Kernel with Complement Graphs
Let K be any kernel for graphs, that we will call thesd&ernel. Then the Weisfeiler-Lehman kernel Witlitera-
tions with the base kern& is defined as:
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kw(G H) =K(G, H) +k(G, H) +TEKG, H,).

If we take the complement graphs into consideratiom will derive the Weisfeiler-Lehman kernel withcomple-
ment graphs:

k{) (G, H) =k(Gy, H,) +k(Gy, Ho) +K(Gy, Hy) + K(G,, H,) + (I3 k(G, . H, ) +k(G, . H,),

where(go,a,[ﬂl[gh),(H_o,E,[ﬂl[l-l_h) are complement graphs ofG,,G,,G,), (H,,H,,00H,).

Let the base kerndt be any positive semidefinite kernel on graphs.nTtre corresponding Weisfeiler-Lehman
kernel kVT,,_ is positive semidefinite.

2.6 Shortest Path and Floyd-War shall Algorithm
Given an undirected grap® = (V, E) the shortest path graph[lfﬁsp(\/, E') , Which contains the same set of

vertices asG and the edge between every pair of vertices isléabwith the shortest distance between them in the
original graph. The transformation frofe to Gsp can be performed by any all-pairs shortest patlorétgn.
Floyd—Warshall algorithm(See Algorithm 2)[18] idrattive and effective because it is straightfodvand has time

complexity of O(n3) . Then, a kernel function was used to calculate singlarity between two shortest path

graphs according to the following definitions, whiwere first defined by Borgwardt and Kriegel[9]id proved to
be a positive semidefinite kernel and is computabfelynomial time.

Algorithm 2.Floyd—Warshall algorithm (Grapf with Nnodes and adjacency matsx)
Floyd(G)

for K <1 ton

fori « 1 ton

for j «1 ton

if(cost(i, K )+cost(k, j )<cost(, | ))

cost(,  )=cost(i,k )+cost(k, j )

endif

endfor

endfor
endfor

Let € be the edge connecting verticdsand W, on graphG, and€, be the edge connecting nodés and W,
on graphH . A walk on an edge includes the edge and its tdjacant vertices. A walk kerné(Walk is used to

compare the walk and €, as: K, (€,,€,) = K,,4dV1, V) * Koo d €, ) * Koad W, W) ,where K, is the kernel

function for comparing two vertices, addedge is a kernel function focomparing two edges.

The kernel function for comparing two verticdsand V is a Gaussian kernel[19] over their respectivéufeavec-
tors,

knode(uiv) =€ex ” f(U) . :(V)” )
20

The kernel function for comparing two edgéand f is a Brownian bridge kernel that assigns the hégkealue to
edges with identical weights, and 0 to all edges differ in weight more than a constamit

Keage(® T) = max(0,c - [length(e) —length(f ))). In this paper, we use= 2.
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2.7 Shortest Path Kernel
Given two shortest path grapks(V,, E,) and H (V,, E, ) the shortest path graph kernel:

kSP(G’H) = Z kaalk (e.l.’ez)!

elE, 6 E,

whereK,,, is a kernel function for comparing two edge walkéength 1.

Floyd-transformation require®(n’) time. E, and E, contain O(n”) edges. The computation of the shortest-

path graph kernel requird®(n*) time.

2.8 Weisfeiler-Lehman Shortest Path Kernel with Complement Graphs
With the above definitions, we are ready to defiveisfeiler-Lehman shortest path kernel with comm@atgraphs
as:

ki SHG, H) =k Gy, Ho) +k,(Gy, Ho) +Ko,(Gy, Hy)
+K,(Gy, Hy) +IEK (G, H,) +K, (G, Hy ) -

For N graphs, the runtime of WL shortest path kernel sdale asO(N 2n4) .

RESULTSAND DISCUSSION

We compared the performance of the random walkhgkagpnel[20], the shortest path kernel, the WL $t=irKer-
nel without complement graphs and WL Shortest Klenith complement graphs in terms of classificatamturacy
of the classification on D&D[21] and ENZYMES dattssewvhere accuracy shows the overall percentageméct
classifications. D&D is a dataset of 691 enzymeas 4817 non-enzymes. Each protein is representeddvggzh, in
which the nodes are amino acids and two nodesameected by an edge if they are less than 6 Angstrapart.
The task is to classify the protein structures grt@aymes and non-enzymes. ENZYMES is a data gatotéin ter-
tiary structures obtained from Borgwardt et al(20@®nsisting of 600 enzymes from the BRENDA enzytata-
base(Schomburget al., 2004). In this case theitatk correctly assign each enzyme to one of tiCaop-level
classes. Nodes are labeled in the dataset. In tefid&D, we also analyzed the sensitivity, spedificand Mat-
thews correlation coefficient (MCC)[22] of the dcbifications in addition to accuracy (Table 3), wheensitivity is
the percentage of enzymes that have been cormdesgified as enzymes , specificity indicates thecgntage of
non-enzymes that have been correctly classified, ®ICC shows the overlapping between the predistenmd the
actual distribution.

Suppose P represents positive instances N negastences, TP the number of true positives, TNrthber of
true negatives, FP the number of false positivesFv the number of false negatives. Then the acgusensitivi-
ty, specificity and MCC can be calculated by thikofeing formulas,

accuracy= 1N
P+N
.. TP_ TP
sensitiviy = — = ————,
P TP+FN
TN TN
specificily = — = ————,
N FP+TN
MCC TPXTN-FPxFN .
JTP+FRTP+FN(TN+FR(TN+FN)

We performed 10-fold cross-validation of C-Suppdector Machine Classification using LIBSVM[23], ngi 9

folds for training and the rest one for testingl pdrameters of the SVM were optimized on thentrey data set
only. To exclude random effects of fold assignmewes repeated the whole experiment 10 times. Wevshv@rage
classification accuracies and standard deviationBable 1. Table 2 shows the size of both datasétruntime of
the methods computing on them.
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Table 1: The classification accuracy(%) and standard deviation of each kernel on protein data sets

Method/Data set D&D ENZYMES
Random Walk Kernel 70.26(x0.86) 0.24(x0.69)
Shortest Path Kernel 78.19(x0.26) 42.18(+0.43)

WL Shortest Path Kernel without complement graphs  81.27(+0.70) 62.47(20.61)
WL Shortest Path Kernel with complement graphs 83.64(+0.92) 63.96(+0.84)

Table2: CPU runtime for kernel computation on protein classification

Data set D&D ENZYMES
Class size 2 6
Maximum nodes 5478 126

Average nodes 284.32 32.63
Number of graphs 1178 600
Random Walk Kernel 52days 39days
Shortest Path Kernel 25h 17min22s 38s
WL Shortest Path Kernel without complement graphs 64days 1min3s
WL Shortest Path Kernel with complement graphs 71days 2minlls

Table 3: Comparison of our method with othersusing D& D data set

Method Sensitivity Specificity MCC
Random Walk Kernel 65.28% 71.35% 0.523
Shortest Path Kernel 71.32% 79.64% 0.736

WL Shortest Path Kernel without complement graphs 78.24% 83.77% 0.821
WL Shortest Path Kernel with complement graphs 81.05% 86.13% 0.836

In terms of runtime, The shortest path kernel dedWL shortest path kernel were competitive tordrelom walk

kernel on smaller graphs (ENZYMES), but on D&D theintime degenerated to more than 25 hours fosltioetest
path kernel, 64 days for the WL shortest path Kewihout complement graphs and 71 days for the $ibrtest

path kernel with complement graphs. Using a grapmbdel the distribution of amino acid residuestioa 3D

structure, our method efficiently captures varistimictural determinants related to protein functibhe kernels
using WL method performed better than other ketyyats. Furthermore, the WL shortest path kerneh witmple-

ment graphs outperforms the other kernels with @uracy of at least 83.64%, and it achieves imprams in

accuracy more than 2% over the WL shortest pathekewithout complement graphs. Meanwhile, consiugri
shortest paths instead of walks increases claagdit accuracy significantly. For the random wadkrel, classifi-

cation is the worst as with an increasing numbetotiering walks, classification accuracy decreasedble 3 also
shows that our proposed method outperforms othénads.

CONCLUSION

In this paper, we propose a simple yet effective efficient graph classification approach thabased on topolog-
ical and label graph attributes. Our main ided& graphs from the same class should have siatiidbute values.
On the basis of an extensive comparison with siktbe-art graph kernel classifiers, we show that approach
yields competitive or better accuracies and hag#@jly much lower computational times. Our conatusis that
graph attributes are effective in capturing disématting structural information from different class Our new ker-
nels based on Weisfeiler-Lehman test of isomorplapen the door to applications of graph kerneltaage graphs
in bioinformatics, for instance, protein functioregiction via detailed graph models of protein ctuoe on the ami-
no acid level, or on gene networks for phenotypdigtion. A challenging question for further stugisill be to
consider kernels on graphs with continuous or lighensional node labels and their efficient compaorta

Acknowledgments
This project is supported by Beijing Municipal Edtion Commission. The authors are grateful to thgifgy Uni-
versity of Technology for financial support.

REFERENCES

[1] Vapnik V. The nature of statistical learning the®pringer-Verlag, New York1995.

[2] V.N. Vapnik, S.E. Golowich and A.J. Smokedv. Neural Information Procession Sys96, 281-287.

[3] D. Haussler. Convlution kernels on discreteditmes, Technical Repomepartment of Computer Science,
University of California at Santa Cru¥999.

[4] T. Hao, L. Shuhui and C. Yuehudiournal of Chemical and Pharmaceutical Reseaffi3, 5(11), 678-683.
[5]W. Gao, Y. Gao and L. Liangournal of Chemical and Pharmaceutical Reseai3, 5(9), 592-598.

568



Jiang Qiangrong et al J. Chem. Pharm. Res., 2014, 6(2):563-569

[6] H. Xiangguang, W. Yaya and G. Wéburnal of Chemical and Pharmaceutical Resea®i3, 5(12), 196-200.
[7] K.M. Borgwardt et alBIOINFORMATICS$2005, 21(1), i47-i56.

[8]J. Ramon and T. GartndProceedings of the First International Workshop Miming Graphs, Trees and Se-
guences2003, 65-74.

[9] K.M. Borgwardt and H.-P. KriegeProceedings of the Fifth IEEE International Confece on Data Mining
2005, 74-81.

[10]V. Vacic, M. L. lakoucheva, S. Lonardi and P. Ragix. Journal of Computational Biologp010, 17(1), 55-
72.

[11]N. Shervashidze et dhternational Conference on Artificial Intelligenead Statistics, 2009, 488-495.

[12]P. Mahé and J.-P. VelMachine Learning2009, 75(1), 3-35.

[13]D.L.Vertigan and G.P. Whittlelournal of Combinatorial Theory, Series 97, 71(2), 215-230.

[14]V. N. Zemlyachenko, N. M. Korneenko and R. I. Tyshikh. Journal of Soviet Mathematic4985, 29(4),
1426-1481.

[15]B.J. Weisfeiler and A.A. LemaiNaucho-Technicheskaja Infrormatsp68, 2(9), 12-16.

[16]B.J. Weifeiler. On construction and identificatioh graphs Springer-Lecture Notes in Mathematics, New
York, 1976.

[17]R.W. Floyd. Communications of the ACNI962.

[18]B.V. Cherkassky, A.V. Goldberg and T. Rad2#athematical programmind996, 73(2), 129-174.

[19]J. Wang , H. Lu and K.N. PlataniotRattern recognition2009, 42(7), 1237-1247.

[20]H. Kashima, K. Tsuda and A. Inokucliroceedings of the Twentieth International Confeeelon Machine
Learning 2003, 321-328.

[21]P.D. Dobson and A.J. Doigournal of Molecular Biology2003, 330(4), 771-783.

[22]D.M.W. PowersJournal of Machine Learning Technologi@811, 2(1), 37-63.

[23]C.C. Chang and C.J. LIACM Transactions on Intelligent Systems and Teduyyp2011, 2(3), 27.

569



