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ABSTRACT 
 
Protein classification is a well established research field concerned with the discovery of molecule’s properties 
through informational techniques. Graph-based kernels provide a nice framework combining machine learning 
techniques with graph theory. In this paper we introduce a novel graph kernel method for annotating functional 
residues in protein structures. A structure¬ is first modeled as a protein contact graph, where nodes correspond to 
residues and edges connect spatially neighboring residues. In experiments on classification of graph models of pro-
teins, the method based on Weisfeiler Lehman shortest path kernel with complement graphs outperformed other 
state-of-art methods. 
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INTRODUCTION 

 
Kernel methods are an important method which is widely used in statistical learning theory[1]. Kernels help to  
adapt classification regardless how classification performs. That is to say, kernels act like an interface between clas-
sification tools and data sets via Support Vector Machines[2]. Early studies on kernel methods dealt almost exclu-
sively with vector-based descriptions of input data. This procedure, though convenient, does not always effectively 
capture topological relationships inherent to the data; therefore, the power of the learning process may be insuffi-
cient. Haussler[3] was the first to define a principled way of designing kernels on structured objects, the so-called R-
convolution kernel. Over recent years, kernels on structured objects such as strings and trees[4], on nodes in graphs 
and on graphs have been defined. Graphs are natural data structures to model such structures, with nodes 
representing objects and edges the relations between them[5]. In this context, one often encounters two questions: 
“How similar are two nodes or edges in a given graph?” and “How similar are two graphs to each other?” 
  
For instance, in protein classification[6], one might want to predict whether a given protein is an enzyme or not. 
Computational approaches infer protein function by finding proteins with similar sequence, structure, or chemical 
properties. A very successful recent method is to model the protein as a graph(see Fig 1), and assign similar func-
tions to similar graphs[4]. Generally speaking, graph kernels are based on the comparison of graph-substructures via 
kernels. Several different graph kernels have been defined in machine learning which can be categorized into three 
classes: graph kernels based on walks[8] and paths[9], graph kernels based on limited-size subgraphs[10][11], and 
graph kernels based on subtree patterns[8][12]. To define a graph kernel, some requirements are put forward: the 
kernel should be measurable on the issue of similarity for graph; second, it should be computable in an acceptable 
time; third, it should be positive definite; fourth, it should be applicable widely. However, some of the kernels can-
not meet all of these requirements. In this paper, we present a new graph kernel that measure similarity based on 
Weisfeiler-Lehman shortest path in undirected graphs, that are computable in polynomial time, that are positive se-
midefinite.  
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                                    protein                                 secondary                                      sequence                               graph structure 
                                                                        structure elements 

 
Fig. 1: Illustration of graph generation from PDB protein file 

 
EXPERIMENTAL SECTION 

 
2.1 Some Definitions on Graph Theory 
We define a graph G as a triplet ),,( lEV , where V  is the set of vertices, E  is the set of undirected edges, and 

∑→Vl :  is a function that assigns labels from an alphabet ∑  to nodes in the graph. The neighborhood )(vΝ  of 

a node v  is the set of nodes to which v  is connected by an edge, that is { }Evvvv ∈=Ν ),()( '' . We assume that 

every graph has n  nodes, m edges, and a maximum degree of d . 
 
The adjacency matrix A  of G  is defined as follows: 

    [ ] ,
0

,),(1



 ∈

=
otherwise

Evvif
A

ji
ij  

where iv  and jv  are nodes in G . Labels can be added on nodes or edges, these labels are referred as attributes. 

 

A walk w  of length 1−k  in a graph is a sequence of nodes kvvv ,,, 21 ⋅⋅⋅  where Evv ii ∈− ),( 1  for ki ≤<1 . 

 
A path p  is a walk without same nodes in the sequence. 

 

A cycle is a walk with kvv =1 ,a simple cycle does not have any repeated nodes except for 1v . 

 

Suppose ),( EVG is a graph with vertex set V and edge set E . Then, its complement ),( EVG  is a graph with the 

same vertex set V , but with a different edge set EVVE \×= . In other words, the complement graph is made up 
of all the edges missing from the original graph. 
 
2.2 Graph Isomorphism 
Graph similarity or isomorphism[13] is the most essential problem for learning tasks like clustering and classifica-
tion on graphs. In graph theory, an isomorphism of graphs G  and H  is a bijection between the vertex sets of G  

and H : )()(: HVGVf → , such that any two vertices u  and v  of G  are adjacent in G  if and only if )(uf  

and )(vf  are adjacent in H . Graph isomorphism problem is neither known to be polynomial-computable, nor NP-

hard[14]. 
 
2.3 The Weisfeiler-Lehman Test of Isomorphism 
Our method uses concepts from the Weisfeiler-Lehman test of isomorphism[15][16], more specifically its 1-
dimensional variant. Assume we are given two graphs G  and H  and we would like to test whether they are iso-
morphic. The 1-dim Weisfeiler-Lehman test proceeds in iterations, which we index by i  and which comprise the 
steps given in Algorithm 1. 
 
The key idea of the algorithm is to augment the node labels by the sorted set of node labels of neighboring nodes, 
and compress these augmented labels into new, short labels. These steps are then repeated until the node label sets of 
G and H differ, or the number of iterations reaches n . If the sets are identical after n iterations, it means that either 
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G  and  H  are isomorphic, or the algorithm has not been able to determine that they are not isomorphic. See Fig 2, 
for an illustration of these steps. 
 
Algorithm 1. One iteration of the 1-dim. Weisfeiler-Lehman test of graph isomorphism(1968) 
1.  Multiset-label determination 

� For 0=i ,set )()( 0 vlvM i = . 

� For 0>i , assign a multiset-label )(vM i to each node v  in G  and H which consists of the multiset 

{ })()(1 uuul i Ν∈− . 

2.  Sorting each multiset 

� Sort elements in )(vM i  in ascending order and concatenate them into a string )(vsi . 

� Add )(1 vl i −  as a prefix to )(vsi  and call the resulting string )(vsi .  

3.  Label compression 

� Sort all of the strings )(vsi  for all v  from G  and H  in ascending order. 

� Map each string )(vsi  to a new compressed label, using a function ∑→∑*:f  such that 

))(())(( wsfvsf ii =
 
iff )()( wsvs ii = . 

4.  Relabeling 

� Set ))(()( vsfvl ii =  for all nodes in G  and H . 

 

         
 

Fig. 2: Illustration of the 4 steps of one iteration of the computation of the Weisfeiler-Lehman test of isomorphism 
 
2.4 Weisfeiler-Lehman Sequence Graphs 
Define the Weisfeiler-Lehman graph at height i of the graph ),,( lEVG =  as the graph ),,( ii lEVG = . We call 

the sequence of Weisfeiler-Lehman graphs, 

)},,,(,),,,(),,,{(},,,{ 1010 hh lEVlEVlEVGGG ⋅⋅⋅=⋅⋅⋅
 

 

where GG =0 , the Weisfeiler-Lehman sequence up to height h  of G . 0G
 
is the original graph, )( 01 GrG =  is 

the graph resulting from the first relabeling, and so on.  
 
2.5 Weisfeiler-Lehman Kernel with Complement Graphs 
Let k  be any kernel for graphs, that we will call the base kernel. Then the Weisfeiler-Lehman kernel with h  itera-

tions with the base kernel k  is defined as: 
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).,(),(),(),( 1100 hh
h
WL HGkHGkHGkHGk +⋅⋅⋅++=  

 
If we take the complement graphs into consideration, we will derive the Weisfeiler-Lehman kernel with    comple-
ment    graphs: 

+++= ),(),(),(),( 110000 HGkHGkHGkHGkh
wl ),,(),(),( 11 hhhh HGkHGkHGk ++⋅⋅⋅+  

 

where ),,,(),,,,( 1010 hh HHHGGG ⋅⋅⋅⋅⋅⋅  are complement    graphs  of    ),,,,( 10 hGGG ⋅⋅⋅
 

).,,,( 10 hHHH ⋅⋅⋅  

 
Let the base kernel k  be any positive semidefinite kernel on graphs. Then the corresponding Weisfeiler-Lehman 

kernel h
WLk  is positive semidefinite. 

 
2.6 Shortest Path and Floyd-Warshall Algorithm 

Given an undirected graph ),( EVG =  the shortest path graph[17], ),( 'EVGsp  , which contains the same set of 

vertices as G  and the edge between every pair of vertices is labeled with the shortest distance between them in the 

original graph. The transformation from G  to spG can be performed by any all-pairs shortest path algorithm. 

Floyd–Warshall algorithm(See Algorithm 2)[18] is attractive and effective because it is straightforward and has time 

complexity of )( 3nO . Then, a kernel function was used to calculate the similarity between two shortest path 

graphs according to the following definitions, which were first defined by Borgwardt and Kriegel[9]. It is proved to 
be a positive semidefinite kernel and is computable in polynomial time. 
 

Algorithm 2. Floyd–Warshall algorithm (Graph G  with nnodes and adjacency matrixA ) 

Floyd(G ) 
for nk to1←  

for ni to1←  

for nj to1←  

if(cost( ki, )+cost( jk , )<cost( ji, )) 

cost( ji, )=cost( ki, )+cost( jk , ) 

endif 
endfor 
endfor 
endfor 
 

Let 1e be the edge connecting vertices 1v  and 1w  on graph G , and 2e be the edge connecting nodes 2v  and 2w  

on graph H . A walk on an edge includes the edge and its two adjacent vertices. A walk kernel walkk is used to 

compare the walk1e and 2e as: ,),(*),(*),(),( 21212121 wwkeekvvkeek nodeedgenodewalk = where
  nodek

 
 is  the  kernel  

function  for  comparing  two  vertices,  and  edgek
  
is a  kernel function for

 
comparing two edges. 

 
The kernel function for comparing two vertices u  and  v  is a Gaussian kernel[19] over their respective feature vec-
tors, 

.
2

)()(
exp),(

2

2













 −
=

δ
vfuf

vuknode  

 
The kernel function for comparing two edges eand f  is a Brownian bridge kernel that assigns the highest value to 

edges with identical weights, and 0 to all edges that differ in weight more than a constant c : 

).)()(,0max(),( flengthelengthcfekedge −−=  In this paper, we use c= 2.
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2.7 Shortest Path Kernel 

Given two shortest path graphs ),( 11 EVG  and ),( 22 EVH the shortest path graph kernel: 

),,(),( 21

11 22

eekHGk
Ee Ee

walksp ∑ ∑
∈ ∈

=  

where walkk  is a kernel function for comparing two edge walks of length 1. 

 

Floyd-transformation requires )( 3nO  time. 1E  and 2E contain )( 2nO  edges. The computation of the shortest-

path graph kernel requires )( 4nO  time. 

 
2.8 Weisfeiler-Lehman Shortest Path Kernel with Complement Graphs 
With the above definitions, we are ready to define Weisfeiler-Lehman shortest path kernel with complement graphs 
as: 

.),(),(),(

),(),(),(),(

11

110000

hhsphhspsp

spspsp
h
WL

HGkHGkHGk

HGkHGkHGkHGspk

++⋅⋅⋅++

++=

 
For N  graphs, the runtime of WL shortest path kernel will scale as )( 42nNO . 

 
RESULTS AND DISCUSSION 

 
We compared the performance of the random walk graph kernel[20], the shortest path kernel, the WL Shortest Ker-
nel without complement graphs and WL Shortest Kernel with complement graphs in terms of classification accuracy 
of the classification on D&D[21] and ENZYMES datasets, where accuracy shows the overall percentage of correct 
classifications. D&D is a dataset of 691 enzymes and 487 non-enzymes. Each protein is represented by a graph, in 
which the nodes are amino acids and two nodes are connected by an edge if they are less than 6 Ångstroms apart. 
The task is to classify the protein structures into enzymes and non-enzymes. ENZYMES is a data set of protein ter-
tiary structures obtained from Borgwardt et al(2005), consisting of 600 enzymes from the BRENDA enzyme data-
base(Schomburget al.,  2004). In this case the task is to correctly assign each enzyme to one of the 6 EC top-level 
classes. Nodes are labeled in the dataset. In terms of D&D, we also analyzed the sensitivity, specificity, and Mat-
thews correlation coefficient (MCC)[22] of the classifications in addition to accuracy (Table 3), where sensitivity is 
the percentage of enzymes that have been correctly classified as enzymes , specificity indicates the percentage of 
non-enzymes that have been correctly classified, and  MCC shows the overlapping between the predictions and the 
actual distribution.  
 
Suppose P represents positive instances N negative instances, TP the number of true positives, TN the number of 
true negatives, FP the number of false positives and FN the number of false negatives. Then the accuracy, sensitivi-
ty, specificity and MCC can be calculated by the following formulas, 

 
NP

TNTP
accuracy

+
+= , 

FNTP

TP

P

TP
ysensitivit

+
== , 

TNFP

TN

N

TN
yspecificit

+
== , 

.
))()()(( FNTNFPTNFNTPFPTP

FNFPTNTP
MCC

++++
×−×=       

 
We performed 10-fold cross-validation of C-Support Vector Machine Classification using LIBSVM[23], using 9 
folds for training and the rest one for testing. All parameters of the SVM were  optimized on the training data set 
only. To exclude random effects of fold assignments, we repeated the whole experiment 10 times. We show average 
classification accuracies and standard deviations in Table 1. Table 2 shows the size of both data set and runtime of 
the methods computing on them. 
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Table 1: The classification accuracy(%)  and standard deviation of each kernel on protein data sets 
 

Method/Data set                                                                               D&D                ENZYMES 
Random Walk Kernel                                                               70.26(±0.86)        20.14(±0.69) 
Shortest Path Kernel                                                                 78.19(±0.26)        42.18(±0.43) 
WL Shortest Path Kernel without complement graphs            81.27(±0.70)        62.47(±0.61) 
WL Shortest Path Kernel with complement graphs                 83.64(±0.92)        63.96(±0.84) 

 
Table 2: CPU runtime for kernel computation on protein classification 

 
Data set                                                                                           D&D                 ENZYMES 

Class size                                                                                            2                            6 
Maximum nodes                                                                              5478                       126 
Average nodes                                                                                284.32                    32.63 
Number of graphs                                                                            1178                       600 
Random Walk Kernel                                                                    52days                  39days 
Shortest Path Kernel                                                                 25h 17min22s              38s 

WL Shortest Path Kernel without complement graphs                 64days                 1min3s 
WL Shortest Path Kernel with complement graphs                      71days                 2min11s 

 
Table 3: Comparison of our method with others using D&D data set 

 
Method                                                                                  Sensitivity       Specificity     MCC 
Random Walk Kernel                                                             65.28%           71.35%         0.523 
Shortest Path Kernel                                                            71.32%          79.64%         0.736 

WL Shortest Path Kernel without complement graphs          78.24%          83.77%         0.821 
WL Shortest Path Kernel with complement graphs               81.05%          86.13%         0.836 

 
In terms of runtime, The shortest path kernel and the WL shortest path kernel were competitive to the random walk 
kernel on smaller graphs (ENZYMES), but on D&D their runtime degenerated to more than 25 hours for the shortest 
path kernel, 64 days for the WL shortest path kernel without complement graphs and 71 days for the WL shortest 
path kernel with complement graphs. Using a graph to model the distribution of amino acid residues on the 3D 
structure, our method efficiently captures various structural determinants related to protein function. The kernels 
using WL method performed better than other kernel types. Furthermore, the WL shortest path kernel with comple-
ment graphs outperforms the other kernels with an accuracy of at least 83.64%, and it achieves improvements in 
accuracy more than 2% over the WL shortest path kernel without complement graphs. Meanwhile, considering 
shortest paths instead of walks increases classification accuracy significantly. For the random walk kernel, classifi-
cation is the worst as with an increasing number of tottering walks, classification accuracy decreases. Table 3 also 
shows that our proposed method outperforms other methods. 

 
CONCLUSION 

 
In this paper, we propose a simple yet effective and efficient graph classification approach  that  is based on topolog-
ical and label graph attributes. Our main idea is that graphs from the same class should have similar attribute values. 
On the basis of an extensive comparison with state-of-the-art graph kernel classifiers, we show that our approach 
yields competitive or better accuracies and has typically much lower computational times. Our conclusion is that 
graph attributes are effective in capturing discriminating structural information from different classes. Our new ker-
nels based on Weisfeiler-Lehman test of isomorphism open the door to applications of graph kernels on large graphs 
in bioinformatics, for instance, protein function prediction via detailed graph models of protein structure on the ami-
no acid level, or on gene networks for phenotype prediction. A challenging question for further studies will be to 
consider kernels on graphs with continuous or high-dimensional node labels and their efficient computation. 
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