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ABSTRACT

Geometric equations of arbitrarily spatial curved beam include curvature-angle equation, angle-displacement
equation and strain-displacement equation. Under the plane cross section assumption, curvature-anglerelationshipis
given out through rigorous mathematical derivation, when arbitrarily spatial curved beam occurs large deformation
(including large rotating angle). Based on the above, angle-displacement relationship can be gotten. And finally,
Green train tensor of arbitrarily spatial curved beam under large deformation is presented, which can consider
warping. On the basis of the plane cross section assumption, in the case of large rotation and large curvature, the
shear deformation of the cross section is caused not only by the torsion angle but al so fromthe other two angles whose
contribution islittle.

Keywords: Spatial curved beam; Curvature-angle equation; éwggplacement equation; Green strain tensor;
Plane cross section assumption

INTRODUCTION

The spatial curved beam is a common structure o1poment in engineering practices, such as the duovielge,
the arch bridge, etc. It is apparently effective dmall curvature curved beams in structural figtement analysis
by using a series of straight-beam elements tocaqpately instead the curved beam, on the contiawill highly
decrease the calculation efficiency on the premfsguarantee of analysis precision as for largeature case, and
so many scholars are devoted to element analystheoEpatial curved beam. As one of the premisefinaé
element analysis, the geometric equations for thegia curved beam must be given, namely the egusitdf
curvature-angle and strain-displacement of thresedsional deformation for the curved beam. Whileséh
relationships are very complicated, they are remdalek characteristics where the curved beam couwdtinduish
from the straight beam, also the emphasis of wdtadlars study.

Bauchau and Hong [1] have attained creative achiews in this field.Worksby Ojalvo and Newman’'s[Bpsen
and Rand’s [3], Pai and Nayfeh's[4]are ground-biregkZhou Weiwen[5] also had analyses systemayitédwever,
these studies are all based on small rotation anadl sleformation.

Therefore, based on predecessors’ successful erperiand methods of differential geometry and teasalysis,
this paper gives out equations of curvature-angiele-displacement and strain-displacement thraimgrous
mathematical derivation, when spatial curved beaours large deformation (including large rotatimgle), where
the large rotating angle means trigonometric funmctvon’t be expanded as algebraic form in dedustion

Mathematica symbols in this paper follow the rutdsdummy index and the rules of free index. Excgpcial
points, the value range of every upper and lowgexnis 1 to 3. In addition, because this papeeg&dbed in curve
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coordinate system, to make clear concept, rigoyodistinguishing covariance variables and corredpwinverse
variables by positions of the index for the vecteessor, and their components, that is, upperxesieorresponds
with inverse variables, lower indexes corresponitls eovariance variables.

2. THE COORDINATE SYSTEMATIC DESCRIPTION FOR INITIAL STATES OF SPATIAL CURVED
BEAM
21THE DESCRIPTION OF ANY POINT ON THE CURVED BEAM

The spatial curved beam can be abstract to a spage. As showed in Fig. 1, any poir’qff on the axis can use
curve length, from starting point of the curve tmzipointp, to make a unique identification. Pick one p@int

arbitrarily in space, and the sagittal diameterPf is:

Current

Original
configuratio

Fig.1Coor dinate systemsfor original and current configuration of spatial curved beam

This paper agrees on boldface variables as tereswisvectors, speciallﬁ represented as vectors, and
represents that the variable is the initial configion. Apparently, the beam axis is uniquely deiaed, when the
relationship between sagittal diameter and curmgttec is given.

This paper useBnacos assumption [6], which assumes that the projeatiothe beam cross sectionkeeps invariant
on the original plane in deformationprocesses. ltistnbe pointed out that it is different from the
Kirchhoffassumption. The cross section can be nzashque identification based on the position ofta@don the

beam axis. To determine the position of the any1tpd~kon the section, follow-up coordinate system fortn
principal axis is built on the sectigrand three unit orthogonalcovariantbase vectors élr,ewhere & is along

tangential direction of axisgz and €sare both on the plane of section. Thus, the posaied identification of any
point Aon the section can be determined by three cooelmambers based on radius vector

OA=R=R, +x%, + X%,
Apparently, when? andx® are zero, the pointA is the point P )

Additionally, according to the knowledge of diffat@l geometry, axis tangentialbase ve&ds equal to the

differential coefficient of R, with respect to*

.SDU
1
CEUH

=

wherell; represents the differential coefficient of theizhte with respect 0
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2.2 THE DIFFERENTIAL COEFFICIENT OF & WITH RESPECT TO X!

The & which change as the coordinafeare variable. The differential coefficient (éi with respect to<'should
be calculated for the following analyses, whichlddue attained based on Frenet-Serret formula [7]

According to differential geometry, there is a dolling relationship among unit tangential vect:tgmnit principal

normal vecton _unit binormal vector b vector, and the differential coefficient of eactioém with respect ta":

] o & o]t
A,b=|-k 0 &N
5 0 -0 Of(f

i

whereX is the curvature] is the torsion. Asshowed in Fig.é;,is t ~While 62' & and f , b are generally of

misalignment, there is a following relationshipween two groups of the unit vectow i§ the angle betweer®,
and i)

My

1 0 0
=|0 coxx simxr
0 -sina cosr

@D Dt DN
N
Ohv Dhr

w

Thereuponthe differential coefficient o with respect to' can be obtained.

i [Kij] _/?3 0 kl 1)

DI

i1= Kij

mn

K=0+a,

4 R,=Ksina; R,=Kcosr

0, [0, [[;] and [[] represent matrices in this paper (the matricesesponding to second-order tensor are
also represented so) , arﬂj, 0" and U, represent the component iofow j column or tensorial component for

the matrix. The derivation o€ is conveniently transformed to onelinear combovatly formula(l).

3. THE COORDINATE SYSTEMATIC DESCRIPTION FOR CURRENT STATES OF SPATIAL CURVED
BEAM
3.1 THE DESCRIPTION OF ANY POINT FOR CURRENT STATESON THE CURVED BEAM

Former point P on the axis will take place a displacement and ntoveoint P , when the curved beamproduces

deformation. As showed in Fig. 1, here the sagittaineter of pointl5 can be obtained by formal sagittal diameter
adding a displacement vector.

S

To emphasize once more, thé represents the vector of current states.

The displacement vectaris unfolded to its component based @n, thus,

IiozF:eo"'uiéi; € =Ry,

Similar to the initial states, concomitant coordénaystemfor central principal axis is built on geetion for current
states,and threecovariantbase vectors a&eNote that because of effectsaafal strain and shear straig, is neither

an unit vector nor orthogonal ép and &, but & and €, are still a pair of orthogonal unit vectors based
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Bnacos assumption. Here another group of unit orthoganaidantbase vectorsis introduced, to be conven@nt
follow description.

| >

0

The point is Ain the current state when the initial state poi&t takes place displacement. Becaus@adcos
assumption, on the coordinate of the base vec&fer current states, there is

-P= 2% BB 25 * -
OA=R=R,+X€,+x€,=R,+X€, +X&,
=R, +0+Xx%, +x€,

3.2 THE DIFFERENTIAL COEFFICIENT OF & WITH RESPECT TO X' BASED ON KIRCHHOFF
ASSUMPTION

Generally,t.:al is neither a unit vector nor orthogonak:a;o andé, because of effects of axial strain and sheainstra
And because the current stat@sand b are non-coplanar witl‘é and é which causes there is no inevitable

relationship amongé']and current stateg Aand b , the derivative relations similar to the formulg ¢annot be
obtained under thBrnacos assumption.

The derivation oéucan be transformed to onelinear combination simtitaformula (1), which could copy the
treatment of initial state, only when the Kirchhaffsumption is introduced:

&, =K/e’ )
where specific componentsoﬁiij are same as the form of formula (1), as long agptace initial state temi] in

theformula (1) with the current state item.

3.3 COORDINATE CONVERSIONS OF INITIAL AND CURRENT STATES: CONVERSIONS OF & AND

0

&

Because & and é']are both unit orthogonalcovariantbase vectors, exsions between them can always be finished
based on a following form.

D

&' =T'¢
where [Fij], which could be obtained by revolving around thds through anglé' three times,independence
among three rotation angles must be ensured, im#tex for coordinate transformation.

There are two approaches to obte[Tﬁ j] . One is called the Cardan angle method[8].Nardiely the rotation angle
revolving about real-time axisél']‘, where é,D' is the axis that coordinate system revolves abwety time as saw
in Fig. 2.

o

#around 2° Faround 3

Fig.2 Cardan angle method for coordinatetransfor mation
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While the position of a point on the bar and itsssr section could be determined by three displactsnaand three
angular displacements. On the condition of makimg sndependence among three rotation angles, tngelar

displacements/could be regarded as the component of angular redased oné by comparing with the

component of g unfolded based oré:, which is also corresponding to Green strain nogetil in following paper.
This paper doesn’'t adopt Cardau angle method, Bectue three angular displacemefis Cardau angle method

are based org”".

According to above thinkingéi in the order ofi=1,2,3 revolves around a fixed ax@& 'showed in Fig.3 through
angled' to obtain & . The main contents are as follows: firstlé; revolves aroundél‘through angle?* according

to right-hand rule to obtain the new coordinat&aéi, and Iii is expressed as the componelépé "based on
fixed axiséi '. Then to obtain the expression of the new coordilaaxtséi', the coordinate axislii got from the
previous step, revolves aroundthe fixed agis' through angle®?according to right-hand rule, which is equivalent

to the corresponding compone&é 'revolve arounéz'through angles”. Finally E, revolves around fixed axis

i DR

3" through angle®, which is equivalent that the componeé} é 'of éi' based on fixed axis 'revolves around

€;'through angle?®, to obtain final transformationmatr[ﬂﬁj] . It's important to note that to make sure the cross
section of a curved beam are still plane after me#fdion, the rotation order of coordinate axis dtiobe
éll — ézl — é?,l.

S
%]
D
£

ik
1 3 1 T INAN -
9 g g e
@'around 1 ¢ around 2 @Faround 3 e
2 f
s

Fig.3 Coordinate transformation method in this paper

The concrete form of the transformation matrix is
GG, C,S; -S,
[T|J] =SS, 7CS; SSS;tCE; SE,
CS,C;+SS; CSS;~SE; CE,
c =cosd ; § = sird

also can be written as

[T'1=LAILAL A,
1 0 O c, 0 -s, G, s O
[Al=0 ¢ s[i[A]=|0 1 0 [;[Al=|-s ¢ O
0 -s ¢ s, 0 g 0 01

It is clear that[A] is orthotropic and only relevant to anglewhich proofs [Fij ] is also orthotropic.
In addition, we can find that the transformationtmaobtained according to revolve around real-timés 3, 2, 1

through angled'is formally equivalent to'[ij] in this paper. Please note that meaning of afligedifferent in
Cardau angle method.
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4. THE CURVATURE-ANGLE-DISPLACEMENT RELATIONSHIP OF SPATIAL CURVED BEAM
UNDER THE KIRCHHOFF ASSUMPTION.

4.1 THE CURVATURE-ANGLE RELATIONSHIPUNDER THE KIRCHHOFF ASSUMPTION.

Under theBracos assumption, a plane may be non-planar and wragfteddeformation, so in this case there is no
curvature-angle-displacement relationship. The Irdgsuliterature[5]is based on the Kirchhoff assump. The
curvature-angle relationship based on the Kirchasffumption is as followed.

According to formula (1~3) and considering the ogbnality of [T, ] ], there is
K =TT + LT
Then we can get
4 1 0 -s |6 L
=[0 ¢ sC, |85 +IT'] Ry (@)
K,) |0 -s cg,||6

>
Xt

Xt

3

This is the curvature-angle relationship of spatatved beam. In the derivation process, thetriguetoc
functionhas not been reduced to the angle, sorésslt is suitable for large angle case. And affeiting the
sectional angle, the curvature of the current stéltebe calculated according to formula(4).

When considering the issue of small curvature andllsrotation, we think that s#fr0 , cog/~1. So the results of

formula (4) and literature [5] are the same. Moerpwhen the value of the initial curvature is zdosmula (4) is
reduction to the curvature-angle relationship foaight beam: the curvature is equal to the dexigadf angle with
respect toc’.

5. THE TRAIN-DISPLACEMENT RELATIONSHIP OF SPATIAL CURVED BEAM
5.1 THE STRAIN-DISPLACEMENT RELATIONSHIP UNDER GENERAL CONDITION
In order to describe the strain of any poz?nton section, as shown in Fig. 1, the curve cootdirgystem is

established on poifft, and three concomitant base vectorsgarethis base vector is neither unit vector nor
orthogonal.

According to tensor analysis and formula(1), we gan

So the covariant component of metric tengdr of point Ain curve coordinate system is

gij :%igéj

And its matrix form is
g+ (CR)(CR) + (XR)(XR)  ~x%, xR,
[6;]= 1
sym. 1
g=01-x%, +x%k,)°
Likewise, it can be inferred that the concomitazlm;ebvectoréi in curve coordinate system of current state po@ris
g, =R,(X)=é+a'é
g, = RZ =T,&. 0,= R3 =T;éi
+ +B+BK . B =XT, +X°T,
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The covariant component of metric tens@r is
gij = Gi ng'
And its matrix form is
1+20'+d'a’ Ty+a'T, T/+a'T,
[gij] = 1 0
sym. 1

So we can get the strain tensor of poi&t according to the definition formula of Green gtrai
E=E 3§ =
2E, =1+ 20" +a*a* —g- KR, )k, ) XK, )XK,)
2E, = 2E,, =T, +a*T + Xk,
2E,=2E, =Ti+a"Ts - X%k,
E,=Ej;=E,=E,,=0

(gij - gij)éiéj (7)

N

Formula (7) gives the strain tendeand the covariant component which are corresporiirtge contravariant base
g‘ of %i . It can be inferred from formula(7) that accordinBnacos assumptionk,,=Ezs=E,z=0, only do axial strain

component and the shear strain component existheonross section. In addition, froj, it can be seen that the
relationship in the formula(7) could consider tketion warping.

For convenient application, the contra varf@fgponent corresponding to ten&amdeé should be given.Because
of

Therefore

So
geu ol =T 2X3/?1E12 - 2X2/?1E 13
\/aeu =\/§pﬁ =Ew \/a - =\/§e31= E15(8)

e22 =e33=e23=e32=0

This is the angle-displacement relationship ofdaaggle and large deformation for spatial curveanb@nder the
general condition.

52 THE DISCUSSION ABOUT THAT KIRCHHOFF ASSUMPTION IS EQUAL TO NO SHEAR
DEFORMATION.

In the previous paper, it has concluded that Kiothhssumption in formula(5) is necessary to getrlationship
between angle and displacement. It will be provethée following part that Kirchhoff assumption iguévalent to
no shear deformation in terms of a small rotatiot small curvature.

Through observation of vectoélit can be found that
a'=B'+ B+ pK -1
a' =B+, +B'K;; (i=2,3
Then, the shear strain on the cross section caevirée to
2E, =BT, - X6, +x%0%,~- xTk +x%,

2E,, =BT, + X6~ X’0% ,+ XT'k - x % ,
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If formula (5) is tenable, for the problem of smaltation and small curvature, the shear strain is
2E,=-X6;;  2E,=X°6;

So the shear strain is only caused by torsion aftghend Kirchhoff assumption, that the issue of smathtion and
small curvature is equivalent to no shear deforomatis proved.

From above we can also get, for the large rotadioth large curvature, after considering the Kirchlassumption,
the shear strain of the cross section is not calysed by torsion angle and also by the other two angles, but their
contribution is little.

At last, the other form of axial strain is
£.= 2B +(8),~FB,+BAK,

1, ivip . L i Zi
+Elg,lﬁ,1+ﬁjKj18,l+_2ﬁjKjﬁkKk

1 1 P 3z __1 2z 32
_Eg__Z(XKl)(X Kl) 2(X Kl)(x Kl)

So it can be known that basedRumcos assumption, it is a well-known conclusion thatnaged torsion or warping
will happen in curved beams. And after the intradgcof Kirchhoff assumption, the second term of tigper
formula is equal to zero.

CONCLUSION

Conclusion:
(1)Through rigorous mathematical derivation, thiicke has obtained that, under the Kirchhoff asstiom, the

curvature—angle relationship of large angle amgdaleformation in any spatialcurved beaand further get the
angle—displacement relationship.

(2) This paper gives the component, which is irveuocal coordinate system and section centralcjrat axis
coordinate system, of Green strain tensor of laaggle and large deformation in any curved beameinegal
condition.

(3) It also proves that Kirchhoff assumption is ieglent to no shear deformation in terms of smathtion and
small curvature; but for the large rotation andjéacurvature, after considering the Kirchhoff asgtiom, the shear
strain in the cross section is not only caused dogian anglé', and also by the other two angles, but their
contribution is little.

Outlook:

(1) Although this paper gives the geometric defdromarelationship of large angle and large deforamain any
spatial curved beam, we can find in the discus#ian many of these relationships are transcendentadtion of
trigonometric function containing angle, which etinevitable result of considering large rotatiémd it is not
convenient to establish the finite element formatatso it needs to simplify these relationshipgrigonometric
functional algebraic equation of large limited tada not containing angle.

(2) This paper has not specified the shape of culveams, in fact the forms of curved beams in teoins
engineering is limited, so we may could furtheraading to some common shapes of spatial curved eambers,
and use several geometric deformation relationgiyen in this paper to build up particular cunlEshm element.
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