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ABSTRACT

The forecasting of financial volatility is important for asset management and portfolio selection. It is difficult to
forecast financial volatility accurately due to the high nonlinearity and clustering in financial volatility sequences.
To improve the forecasting accuracy for financial volatility, Least squares wavelet support vector regression
machines (LS'WSVR) is applied to forecasting financial volatility. Using daily SZSE fund index data from China
stock markets and selecting three different kinds of wavelet kernel functions, the paper demonstrates the validity of
LSWSVR for fund volatility forecasting. Four statistical indices, RMSE, MAE, LL, and LINEX, are adopted to test
the forecasting performance of LSWSVR. Experimental results show that on the whole LS WSVR with three different
wavelet kernel functions outperforms the LS-SVR with Gaussian kernel function for in-sample and out-of-sample
fund volatility forecasting. Moreover, the forecasting performance of LS WSVR with Morlet kernel function is better
than those of LS WSVR with Mexican hat wavelet kernel function and DOG wavelet kernel function.
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INTRODUCTION

The difficulty of financial volatility forecastings well known since financial volatility is characized by the high
nonlinearity, clustering, and fat tail. In the l&siv years, researchers have continued to congiffietent models to
forecast financial volatility. The traditional eaametric models, such as regression model and ayessive model,
have difficulty to model these characteristics aflatility. ARCH model suggested by Engle can motled
characteristics of volatility well [1]. As the gaaéized form of ARCH model, GARCH model and hasrbaédely
recognized and been proven to be effective fortiityaforecasting [2-3].

Recent years, artificial intelligence approach wdsduced into the volatility forecasting areaftwther improve
the forecasting performance of the traditional tilitg forecasting model, in which neural netwoikN) is a typical
representative. Typically, NN was combined with G2#R model to forecast volatility [4-5]. The resutisow that
NNs improve the volatility forecasting accuracy GARCH model due to their data-driven nonparamedric
nonlinear properties. However, NN is not perfead &éme application of NN often suffers from problersach as
local minima, the dimension curse and over-learniviich has limited the popularization and applmaiof NN.

Support vector machines (SVM), is a kernel-basedhin@ learning algorithm introduced by Vapink [Bhased on
the structural risk minimization principle, SVM aeemes the problems suffered by NN and has beamsixely
used in classification problems, regression angfyend forecasting because of good generalizatofoance.
Standard SVM has been applied to forecasting Vityaf7-9]. In addition, SVM based wavelet kerneinttion are
proposed to forecast volatility [11]. These reskassults indicate that SVM is an effective andsfiele method for
volatility forecasting.
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Least squares support vector machines (LS-SVM)eldeed by Suykens and Vandevalle, is an improvee tf
SVM [12]. By substituting equality constraints ftine original quadratic programming, LS-SVM redudhe
complexity of computation. Usually, LS-SVM is usked classification and recognition. Another formlds-SVM,
Least squares support vector regression machir@sS{R), is used for regression analysis and fotawasuntil
now, some researchers have adopted LS-SVR to ftreoktility under the GARCH-type and CARRX framenk
and their research results have shown good foiaggstrformance [13-15].

The generalization performance of LS-SVR is maihypends on the selection of an appropriate kermedtion.
Gaussian kernel has been generally used in LS-SVR becaluge good generalization ability. Howeveaussian
kernel can't make LS-SVR approach any curve j(R,) space, which lead LS-SVR can’t approximate aabjtr
objective function. Least squares wavelet suppectar regression machines (LS-WSVR) is a type ofSMR, in
which wavelet kernel is used as the kernel functiinthe same time, wavelet kernels are also etilias support
vector kernel to improve the generalization perfance of LS-SVR[16].

In this paper, LS-WSVR with three different wavelatrnels are applied to forecasting fund volatiliand the
in-sample and out-of-sample forecasting performaridbese LS-WSVR are compared with those of LS-SMfR
Gaussian kernel functions according to evaluation indic€ee remaining of this paper is organized as follows
Section 2 presents the theory of LS-WSVR algorittitmpirical results on SZSE fund index illustratitie
effectiveness of the LS-WSVR are provided in SecBoConclusions are given in the final section.

EXPERIMENTAL SECTION

L east squareswavelet support vector regression machines

LS-SVR applies a squared loss function to replace ®P problem and obtains solutions by solvingdimequations.
In this paper, a one-step-ahead forecasting mddebe¢5VR is established to avoiding the cumulativeors from
the previous step.

Support one time serie® ={x, x,,...,x}Wwith | training samples, based on a nonlinear mappingtiom |,
x 1 Ris mapped into a high-dimensional feature spaeehich the one-step-ahead forecasting model is eefas:

X =W (x)+b, t=1,2,..)- 1 (1)
wherew is weight vector andl is bias term. Then, we obtain the optimizationbtem of LS-SVR as:

. _E 2 g'ﬁl 2
minJ @wbx)=Zlwll Hax (2)

st X, =W (x)+b+x, t=1,2; |- !
with x, T Ris error vector angl is a positive constant named regularization patamin order to solve the above
optimization problem, Lagrange multipliers T R (t=1, 2, ...,I-1) are introduced and the lagrangian function is
defined as:
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On the basis of Karush-Kuhn-Tucker (KKT) condititime conditions for optimality are given by:
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After eliminatingd andw, it can be obtained a set of linear equations:
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whereE=[xy, Xs, ..., X]", 1=[1,....1]ixqa)’s @=[a1, 0z,..., a4]", @andl is an identity matrix with-1 orders is the

kernel function matrix, in which the elements has form of Q=EEK(x, X), for tj=1,2,...]-1. K(x, X) is the

()
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kernel function. Then, the one-step-ahead foramgstiodel of LS-SVR is given by
1
XH1:5_ ajK(xt,xj)+b (6)

t,j=1

For LS-SVR, the kernel functions, which satisfy kkr's theorem, are admissive support vector kefuradtions.

There are two kinds of kernels that can be usateakernel function of LS-SVR, they are dot prodketnels and
translation invariant kernels. According to waveletomposition and the construction method of Kdurection for

LS-SVR, the translation invariant kernels thatsfgtthe translation invariant kernel theorem arevaselet kernels
for LS-SVR:

4 -x ¢
Kot x) =K (x - %) =0 ‘f"ﬁxg @

wherep(X) is called “mother wavelet” and (a>0) is the scaling parameters of wavelet. Presestigne wavelet
kernels functions have been successfully used #8Y/R, includingMexican hat wavelet kernelMorlet wavelet
kernel andDOG kernel. Mother wavelet and wavelet kernel funcfionMexican hat, Morlet, andDOG are given in
Table 1.

Table 1. Mother wavelet and wavelet kernel function

Mother wavelet Wavelet kernel function
Mexican hat 2 2 ¢ 0 @& X,
| =1 ) o 54 e R
2 2} y
Morlet 2 ¢ & ¢
j (X)=cos(1.7% )exée%:c K(x‘,xj)zég:oq T5]I% - X; |E’ %« |*t X 1|
2 [}
boG 01 @y } I x|F°1 | xﬂP
i (x):expé-%i-aex -X—8: K(x,%;)= O!exp@ X — i = expk- IX, 2‘ Wy
2 ’ e f 280 Z 2 % & b

RESULTSAND DISCUSSION

Data description

The used data is daily closing prices for SZSE fimkx of China stock market from January 4, 20irbugh
December 13, 2012. According to a traditional appho the continuously compounded daily returnsatained by
the logarithmic difference of daily closing pricesiltiplied by 100. That is,

Yi =100 (IOth - logpt-l) (8)

wherey, is the continuously compounded daily retumss the daily closing price at timte The data set is divided
into two subsets: the first subset of the datanffréanuary 4, 2011 through March 29, 2012) is thecfasted
in-sample period, and the second subset of the (@@ March 30, 2012 through December 13, 2012hés
forecasted out-of-sample period.

The true underlying volatility process” is an unobservable stochastic quantity. The mostncon method for
measuring a volatility is to square the observedrns. In this paper, the squared retyfis employed as a
measurement for the unobservable volatility proc&placingx in (6) asy;®, the LS-WSVR for forecasting
volatility will be constructed.

Empirical process

To validate the volatility forecasting performarafdS-WSVR, three kernel functionsMexican hat wavelet kernel,
Morlet wavelet kernel anBOG wavelet kernel are selected as the kernel funétidt5-WSVR respectively and the
three LS-WSVR models are used to forecast fundtiibtaFor simplicity, we suppose;=a, such that the number
of parameters needed in LS-WSVR becomes only tieorégularization parametgand the scaling parametrin
order to avoiding the cumulative errors from thevwus step, the models established based on ttimabp
parameters is used to obtain one-step-ahead wgléditecasts of SZSE fund returns.

For comparison, one-step-ahead in-sample and es#ople forecasting results from LS-WSVR basedethre

wavelet kernel functions are compared with LS-S\é@®dulGaussian kernel function, respectively. An@aussian
kernel function is defined as:

2 ||x - x,

K0x%) =expt e (©)

C
!Z

192



Li-Yan Geng and Yi-Gang Liang J. Chem. Pharm. Res,, 2014, 6(6):190-195

whered? is the kernel parameter. Consequently, there @isetao parameters: the regularization parametndo?
needed in LS-SVR witlsaussian kernel function.

Four statistical metrics are used to compare fateog performance of different models, includingtranean
squared error (RMSE), mean absolute error (MABatidhmic error statistic (LL), and linear-exporiah{LINEX).
These statistics are defined as follows:

RMSE= [N"§ (7 - b’ (10)

MAE = N’lg: y2 - | (11)
LL=N"4 §n(h) -In(y) §
(12)
LINEX=N'1é{exp§g - YO cty- ¥d)- } (13)

where K is the forecasted volatility ang?is the realized volatility measured through theasgd returns in the

period oft. N is the number of the observations. RMSE, MSE gnensetric loss functions and LL and LINEX are
asymmetric loss functions. The smaller loss fumctioplies the better forecasting performance.

RESULTSAND DISCUSSION
The results on in-sample forecasting results fo6EBZund volatility are listed in Table 2, where W&SVR1,
LS-WSVR2, and LS-WSVRS stands for LS-WSVR wiitexican hat kernel functionMorlet kernel function, and
DOG kernel function, respectively. LS-SVR stands f&&VR withGaussian kernel function.

Table2. RMSE, MAE, LL, LINEX of in-sample volatility forecasts by four models

Loss functions| LS-WSVR] LS-WSVRP LS-WSVR3 LS-SVR
RMSE 1.1639 1.1636 1.1646 1.1658
MAE 0.9318 0.931 0.9332 0.937¢
LL 8.9089 8.9084 8.9208 8.938¢
LINEX 1.1281 1.088 1.181 1.1674

As is shown in Table 2, LS-WSVR1 and LS-WSVR2 pdavihe smaller statistics RMSE, MAE, LL and LINEX
than LS-WSVR3 and LS-SVR. As for LS-WSVR3 and LSFS\apart from LINEX index, LS-WSVR3 has smaller
RMSE, MAE and LL than LS-SVR. That is to say, LS-W&Son the whole produces superior in-sample vatgtil
forecasting results relative to LS-SVR. We can ase from the results of Table 2 that LS-WSVR2 better
in-sample volatility forecasting results than LS-W&L and LS-WSVR3.

The results on out-of-sample forecasting for SZ8gdfvolatility from the four models are given inbla 3. It
shows that the four statistical metrics RMSE, MAE, and LINEX of LS-WSVR1, LS-WSVR2, and LS-WSVR3
are all smaller than ones of LS-SVR, indicating th&-WSVR are superior to LS-SVR on out-of-sampddatility
forecasting ability. The main reason for the ouipenance of LS-WSVR to LS-SVR is that wavelet kérne
functions can approximate arbitrary objective fimttvell due to their multi-resolution property.

Table3. RMSE, MAE, LL, LINEX of out-of-sample volatility forecasts by four models

Loss functions| LS-WSVR1 | LS-WSVR2| LS-WSVR3 LS-SVH
RMSE 1.0093 1.0092 1.0114 1.0128

MAE 0.733 0.7318 0.7355 0.737

LL 9.907 9.9001 9.9251 9.938¢

LINEX 1.4469 1.4731 1.5309 1.571

As for three LS-WSVR models, with the exclusionLdIEX index, LS-WSVR2 performs better than LS-WSVR1
and LS-WSVR3 on out-of-sample volatility forecagtiind for LINEX index, LS-WSVR1 seems to have sigre
volatility forecasts relative to LS-WSVR2 and LS-WiS3.

Therefore, the results in Table 2 and Table 3 eatekhat as a whole, the performance of LS-WSVBetter than
that of LS-SVR on one-step-ahead in-sample andbbutample SZSE fund volatility forecasting. LS-WSWith
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Morlet wavelet kernel function performs the best amomrgtitihee LS-WSVR models.

Volatility

One-step-ahead in-sample forecasts
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Figure 1. Comparison of in-sample volatility forecasts of SZSE fund index for two models

One-step-ahead in-sample and out-of-sample vdjafitirecasts from LS-WSVR based Morlet wavelet keérn
(LS-WSVR2) and LS-SVR based Gaussian kernel (LS-8MR shown in Figure 1 and Figure 2, respectively.

Volatility

One-step-ahead out-of-sample forecasts
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Figure 2. Comparison of out-of-sample volatility forecasts of SZSE fund index for two models

According to the figures, volatility forecasts pided by both models are all close to the mean efréalized
volatility. Compared with LS-SVR, LS-WSVR2 capturesme up and down peaks in the realized volatsidsies
well. Therefore, it is concluded that LS-WSVR?2 isedfective method for volatility forecasting.

CONCLUSION

This paper applies LS-WSVR based three differembddefunctions to forecasting fund volatility. lasple and
out-of-sample forecasting results of the three rieodee compared with those of LS-SVR ba&iissian kernel
function. Empirical evidence on SZSE fund indexnir€hina stock market indicates that LS-WSVR bas$edet
wavelet kernels functions are all superior to @aissian-kernel LS-SVR in term of volatility forecastingaracy.
And LS-WSVR basedilorlet kernel function offers better volatility forecasgi performance than LS-WSVR based
Mexican hat kernel function an@OG kernel function, respectively.
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