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ABSTRACT 
 

The forecasting of financial volatility is important for asset management and portfolio selection. It is difficult to 
forecast financial volatility accurately due to the high nonlinearity and clustering in financial volatility sequences. 
To improve the forecasting accuracy for financial volatility, Least squares wavelet support vector regression 
machines (LS-WSVR) is applied to forecasting financial volatility. Using daily SZSE fund index data from China 
stock markets and selecting three different kinds of wavelet kernel functions, the paper demonstrates the validity of 
LS-WSVR for fund volatility forecasting. Four statistical indices, RMSE, MAE, LL, and LINEX, are adopted to test 
the forecasting performance of LS-WSVR. Experimental results show that on the whole LS-WSVR with three different 
wavelet kernel functions outperforms the LS-SVR with Gaussian kernel function for in-sample and out-of-sample 
fund volatility forecasting. Moreover, the forecasting performance of LS-WSVR with Morlet kernel function is better 
than those of LS-WSVR with Mexican hat wavelet kernel function and DOG wavelet kernel function. 
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INTRODUCTION 
 
The difficulty of financial volatility forecasting is well known since financial volatility is characterized by the high 
nonlinearity, clustering, and fat tail. In the last few years, researchers have continued to construct different models to 
forecast financial volatility. The traditional econometric models, such as regression model and autoregressive model, 
have difficulty to model these characteristics of volatility. ARCH model suggested by Engle can model the 
characteristics of volatility well [1]. As the generalized form of ARCH model, GARCH model and has been widely 
recognized and been proven to be effective for volatility forecasting [2-3]. 
 
Recent years, artificial intelligence approach was introduced into the volatility forecasting area to further improve 
the forecasting performance of the traditional volatility forecasting model, in which neural network (NN) is a typical 
representative. Typically, NN was combined with GARCH model to forecast volatility [4-5]. The results show that 
NNs improve the volatility forecasting accuracy of GARCH model due to their data-driven nonparametric and 
nonlinear properties. However, NN is not perfect and the application of NN often suffers from problems, such as 
local minima, the dimension curse and over-learning, which has limited the popularization and application of NN. 
 
Support vector machines (SVM), is a kernel-based machine learning algorithm introduced by Vapink [6]. Based on 
the structural risk minimization principle, SVM overcomes the problems suffered by NN and has been extensively 
used in classification problems, regression analysis, and forecasting because of good generalization performance. 
Standard SVM has been applied to forecasting volatility [7-9]. In addition, SVM based wavelet kernel function are 
proposed to forecast volatility [11]. These research results indicate that SVM is an effective and feasible method for 
volatility forecasting. 
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Least squares support vector machines (LS-SVM), developed by Suykens and Vandevalle, is an improved type of 
SVM [12]. By substituting equality constraints for the original quadratic programming, LS-SVM reduces the 
complexity of computation. Usually, LS-SVM is used for classification and recognition. Another form of LS-SVM, 
Least squares support vector regression machines (LS-SVR), is used for regression analysis and forecasting. Until 
now, some researchers have adopted LS-SVR to forecast volatility under the GARCH-type and CARRX framework 
and their research results have shown good forecasting performance [13-15]. 
 
The generalization performance of LS-SVR is mainly depends on the selection of an appropriate kernel function. 
Gaussian kernel has been generally used in LS-SVR because of its good generalization ability. However, Gaussian 
kernel can’t make LS-SVR approach any curve in L2(Rn) space, which lead LS-SVR can’t approximate arbitrary 
objective function. Least squares wavelet support vector regression machines (LS-WSVR) is a type of LS-SVR, in 
which wavelet kernel is used as the kernel function. At the same time, wavelet kernels are also utilized as support 
vector kernel to improve the generalization performance of LS-SVR[16].  
 
In this paper, LS-WSVR with three different wavelet kernels are applied to forecasting fund volatility, and the 
in-sample and out-of-sample forecasting performance of these LS-WSVR are compared with those of LS-SVR with 
Gaussian kernel functions according to evaluation indices. The remaining of this paper is organized as follows. 
Section 2 presents the theory of LS-WSVR algorithm. Empirical results on SZSE fund index illustrating the 
effectiveness of the LS-WSVR are provided in Section 3. Conclusions are given in the final section. 
 

EXPERIMENTAL SECTION 
 
Least squares wavelet support vector regression machines 
LS-SVR applies a squared loss function to replace to a QP problem and obtains solutions by solving linear equations. 
In this paper, a one-step-ahead forecasting model of LS-SVR is established to avoiding the cumulative errors from 
the previous step.  
 
Support one time series 

1 2{ , ,..., }lD x x x= with l training samples, based on a nonlinear mapping functionj , 

tx RÎ is mapped into a high-dimensional feature space in which the one-step-ahead forecasting model is defined as: 

                        1 ( )T
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where ω is weight vector and b is bias term. Then, we obtain the optimization problem of LS-SVR as: 
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with
 t Rx Î is error vector and γ is a positive constant named regularization parameter. In order to solve the above 

optimization problem, Lagrange multipliers 
t Ra Î  (t=1, 2, …, l-1) are introduced and the lagrangian function is 

defined as: 
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On the basis of Karush-Kuhn-Tucker (KKT) condition, the conditions for optimality are given by: 
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After eliminating ζ and ω, it can be obtained a set of linear equations:  
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where E=[x2, x3,…, xl]
T, 1=[1,…,1]1×(l-1)

T, α=[α1, α2,…, αl-1]
T, and I is an identity matrix with l-1 orders. Ω is the 

kernel function matrix, in which the elements has the form of Ωtj=EiEjK(xt, xj), for t,j=1,2,…,l-1. K(xt, xj) is the 
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kernel function. Then, the one-step-ahead forecasting model of LS-SVR is given by 
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For LS-SVR, the kernel functions, which satisfy Mercer’s theorem, are admissive support vector kernel functions. 
There are two kinds of kernels that can be used as the kernel function of LS-SVR, they are dot product kernels and 
translation invariant kernels. According to wavelet decomposition and the construction method of kernel function for 
LS-SVR, the translation invariant kernels that satisfy the translation invariant kernel theorem are as wavelet kernels 
for LS-SVR:  
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where φ(x) is called “mother wavelet” and at (at>0) is the scaling parameters of wavelet. Presently, some wavelet 
kernels functions have been successfully used in LS-SVR, including Mexican hat wavelet kernel, Morlet wavelet 
kernel and DOG kernel. Mother wavelet and wavelet kernel function for Mexican hat, Morlet, and DOG are given in 
Table 1. 
 

Table 1. Mother wavelet and wavelet kernel function 
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RESULTS AND DISCUSSION 

 
Data description 
The used data is daily closing prices for SZSE fund index of China stock market from January 4, 2011 through 
December 13, 2012. According to a traditional approach, the continuously compounded daily returns are obtained by 
the logarithmic difference of daily closing prices multiplied by 100. That is,  
                                 ( )1100 log logt t ty p p -= ´ -                                  (8) 

 
where yt is the continuously compounded daily returns, pt is the daily closing price at time t. The data set is divided 
into two subsets: the first subset of the data (from January 4, 2011 through March 29, 2012) is the forecasted 
in-sample period, and the second subset of the data (from March 30, 2012 through December 13, 2012) is the 
forecasted out-of-sample period. 
 
The true underlying volatility process ht

2 is an unobservable stochastic quantity. The most common method for 
measuring a volatility is to square the observed returns. In this paper, the squared return yt

2 is employed as a 
measurement for the unobservable volatility process. Replacing xt in (6) as yt

2, the LS-WSVR for forecasting 
volatility will be constructed.  
 
Empirical process  
To validate the volatility forecasting performance of LS-WSVR, three kernel functions: Mexican hat wavelet kernel, 
Morlet wavelet kernel and DOG wavelet kernel are selected as the kernel function in LS-WSVR respectively and the 
three LS-WSVR models are used to forecast fund volatility. For simplicity, we suppose at =a, such that the number 
of parameters needed in LS-WSVR becomes only two: the regularization parameter γ and the scaling parameter a. In 
order to avoiding the cumulative errors from the previous step, the models established based on the optimal 
parameters is used to obtain one-step-ahead volatility forecasts of SZSE fund returns. 
 
For comparison, one-step-ahead in-sample and out-of-sample forecasting results from LS-WSVR based three 
wavelet kernel functions are compared with LS-SVR based Gaussian kernel function, respectively. And Gaussian 
kernel function is defined as: 
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where σ2 is the kernel parameter. Consequently, there are only two parameters: the regularization parameter γ and σ2 
needed in LS-SVR with Gaussian kernel function.  
 
Four statistical metrics are used to compare forecasting performance of different models, including root mean 
squared error (RMSE), mean absolute error (MAE), logarithmic error statistic (LL), and linear-exponential (LINEX). 
These statistics are defined as follows: 
 

                    

1 2 2 2

1

RMSE ( )
N

t t
t

N y h-

=

= -å                                    (10) 

                                1 2 2

1

MAE
N

t t
t

N y h-

=

= -å                                        (11) 

                                

21 2 2

1

LL ln( ) ln( )
N

t t
t

N h y-

=

é ù= -ë ûå                           

(12) 

                       
{ }1 2 2 2 2

1

LINEX= exp ( ) ( ) 1
N

t t t t
t

N h y h yc c-

=

é ù- - - -ë ûå                           (13) 

where 2
th  is the forecasted volatility and 2

ty is the realized volatility measured through the squared returns in the 

period of t. N is the number of the observations. RMSE, MSE are symmetric loss functions and LL and LINEX are   
asymmetric loss functions. The smaller loss function implies the better forecasting performance.  
 

RESULTS AND DISCUSSION 
 

The results on in-sample forecasting results for SZSE fund volatility are listed in Table 2, where LS-WSVR1, 
LS-WSVR2, and LS-WSVR3 stands for LS-WSVR with Mexican hat kernel function, Morlet kernel function, and 
DOG kernel function, respectively. LS-SVR stands for LS-SVR with Gaussian kernel function. 
 

Table 2. RMSE, MAE, LL, LINEX of in-sample volatility forecasts by four models 
 

Loss functions LS-WSVR1 LS-WSVR2 LS-WSVR3 LS-SVR 
RMSE 1.1639 1.1636 1.1646 1.1658 
MAE 0.9318 0.931 0.9332 0.9376 
LL 8.9089 8.9084 8.9208 8.9386 

LINEX 1.1281 1.088 1.181 1.1676 

 
As is shown in Table 2, LS-WSVR1 and LS-WSVR2 provide the smaller statistics RMSE, MAE, LL and LINEX 
than LS-WSVR3 and LS-SVR. As for LS-WSVR3 and LS-SVR, apart from LINEX index, LS-WSVR3 has smaller 
RMSE, MAE and LL than LS-SVR. That is to say, LS-WSVR on the whole produces superior in-sample volatility 
forecasting results relative to LS-SVR. We can also see from the results of Table 2 that LS-WSVR2 has better 
in-sample volatility forecasting results than LS-WSVR1 and LS-WSVR3. 
 
The results on out-of-sample forecasting for SZSE fund volatility from the four models are given in Table 3. It 
shows that the four statistical metrics RMSE, MAE, LL, and LINEX of LS-WSVR1, LS-WSVR2, and LS-WSVR3 
are all smaller than ones of LS-SVR, indicating that LS-WSVR are superior to LS-SVR on out-of-sample volatility 
forecasting ability. The main reason for the outperformance of LS-WSVR to LS-SVR is that wavelet kernel 
functions can approximate arbitrary objective function well due to their multi-resolution property. 
 

Table 3. RMSE, MAE, LL, LINEX of out-of-sample volatility forecasts by four models 
 

Loss functions LS-WSVR1 LS-WSVR2 LS-WSVR3 LS-SVR 
RMSE 1.0093 1.0092 1.0114 1.0128 
MAE 0.733 0.7318 0.7355 0.7375 
LL 9.907 9.9001 9.9251 9.9386 

LINEX 1.4469 1.4731 1.5309 1.571 

 
As for three LS-WSVR models, with the exclusion of LINEX index, LS-WSVR2 performs better than LS-WSVR1 
and LS-WSVR3 on out-of-sample volatility forecasting. And for LINEX index, LS-WSVR1 seems to have superior 
volatility forecasts relative to LS-WSVR2 and LS-WSVR3.  
 
Therefore, the results in Table 2 and Table 3 conclude that as a whole, the performance of LS-WSVR is better than 
that of LS-SVR on one-step-ahead in-sample and out-of- sample SZSE fund volatility forecasting. LS-WSVR with 
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Morlet wavelet kernel function performs the best among the three LS-WSVR models. 
 

Figure 1. Comparison of in-sample volatility forecasts of SZSE fund index for two models 
 

One-step-ahead in-sample and out-of-sample volatility forecasts from LS-WSVR based Morlet wavelet kernel 
(LS-WSVR2) and LS-SVR based Gaussian kernel (LS-SVR) are shown in Figure 1 and Figure 2, respectively. 
 

Figure 2. Comparison of out-of-sample volatility forecasts of SZSE fund index for two models 
 
According to the figures, volatility forecasts provided by both models are all close to the mean of the realized 
volatility. Compared with LS-SVR, LS-WSVR2 captures some up and down peaks in the realized volatility series 
well. Therefore, it is concluded that LS-WSVR2 is an effective method for volatility forecasting. 
 

CONCLUSION 
 
This paper applies LS-WSVR based three different kernel functions to forecasting fund volatility. In-sample and 
out-of-sample forecasting results of the three models are compared with those of LS-SVR based Gaussian kernel 
function. Empirical evidence on SZSE fund index from China stock market indicates that LS-WSVR based three 
wavelet kernels functions are all superior to the Gaussian-kernel LS-SVR in term of volatility forecasting accuracy. 
And LS-WSVR based Morlet kernel function offers better volatility forecasting performance than LS-WSVR based 
Mexican hat kernel function and DOG kernel function, respectively. 
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