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ABSTRACT 
 
In this study, flutter and aeroelastic responses of rotor blade with bending-torsional coupling have been investigated 
for composite thin-walled structure called ‘integration line equation closed-section’. The aerodynamic models 
adopted here are a simple aerodynamic model used for classical flutter and a reduced nonlinear aerodynamic model 
suitable for constant pitch motion for stall flutter, which are used in order to investigate quickly parameters that 
influence the behavior of the aeroelastic system. The coupled partial differential structural equation are solved by 
discretization, with time responses investigated. 
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INTRODUCTION 
 

Although stability of classical flutter has generally not been a driving issue in utility-scale design, one case in which 
classical flutter was observed involved a high-speed rotating blade in pitch excitation process. However, with the 
advent of large wind turbine fitted with relatively slender blades, classical flutter may become a more important de-
sign consideration. In addition, innovative blade designs involving the use of aeroelastic tailoring, wherein the blade 
twists as it bends under the action of aerodynamic loads to shed load resulting from wind turbulence, may increase 
the blade’s proclivity for flutter[1]. 
 
The analysis of classical flutter in wind turbines necessitates the use of unsteady aerodynamics [2]. For horizontal 
axis wind turbines (HAWT) there are two interconnected sources of unsteady aerodynamics. The technique modified 
for the aeroelastic analysis of a HAWT blade was developed by Theodorsen[3]. Most of the literature of classical 
flutter focused on the helicopter blades. Chaviaropoulos[4] investigated classical flutter of 2-D section of wind tur-
bine blade on the non-coupling condition. However the aerodynamics of a HAWT system, during catastrophic aero-
elastic phenomena, may involve highly separated flows. The nonlinear blade theory for rotating systems has far sur-
passed what the classical flutter has revealed. So stall flutter should be investigated. Ren[5]adopts a structural equa-
tion based on a composite thin-walled beam model with bending-twist coupling, and analyze nonlinear aeroelastic 
stability for stall flutter. The author has made a literature survey in the subject matter on rotating thin-walled struc-
ture (not blade section) systems without structural damping and investigated the nonlinear aeroelastic stability based 
on linearization in another paper [6]. As for the partial differential equations, which represent the dynamic behavior 
of wind turbine blade, a radial basis function procedure [7] and Galerkin method [5] are used to transform partial 
differential equations into a discrete eigenvalue problem. 
 
In this paper, flutter and responses under the circumferentially asymmetric stiffness (CAS) situation of slender 
composite blade with thin-walled closed cross section are investigated. A number of researchers have developed the 
numerous solution methods to analyze the vibration problems of composite beams in recent 30 years, especially in 
the development of analytical expressions for extension-twist coupling and bending-twist coupling. Here a blade 
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section structural model of coupled partial differential equations is applied based on composite beam theories 
[8-9].This model incudes the variation of shear modulus in different walls of the cross section in the warping func-
tion and transverse shear related couplings. However, restrained warping effects are not included in the model. Flut-
ter and responses of bending-torsional coupling blade integrated with structural damping are analyzed, with influ-
ences of ply angles investigated. In this paper, a simple aerodynamic model used for classical flutter and a reduced 
nonlinear aerodynamic model suitable for constant pitch motion for stall flutter are used in order to investigate 
quickly a wide range of parameters that control the behavior of the aeroelastic system. 
 
2. Analytical model 
2.1  Structural model 
Considering the closed-sections of symmetric slender thin-walled composite blade shown in figure 1(a)-(b), the 
length of the blade is L in x direction. The cross-sectional dimension, chord length, is c. The thickness of blade sec-
tion is denoted by h, and the radius of curvature of the middle surface by r. It is assumed that, c<<L, h<<c, h<<r. φ 
represents twist angle of the closed-section, the pitch angle isβ, and the wind velocity is denoted by U. The mid-
dle-line of the thin-walled structure called ‘integration line equation closed-section’ is as follows [10]: 
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where e denotes 1/4 chord length, and parameter θφ changes from 0 to 2π.  
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Figure 1.  Aerodynamic sectional forces of classical flutter (a) and stall flutter (b) 

 
2.2  Equations of motion for classical flutter 
The linear force and torque, illustrated in figure 1(a) and deduced in terms of the lift and moment coefficients for 
small displacements with the air density ρa , are expressed respectively as follows[4]: 
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The equations of free vibration with bending-torsional coupling of anisotropic thin-walled closed-section blade sec-
tion are derived using a variational asymptotic approach and Hamilton’s principle [8-9]. Considering rotation with 
rotate speed Ω, under variable parameters, such as ply angle and wind velocity U, the following governing equations 
of motion for blade tip are obtained: 

)cos(

)()]([ 2
1

2
2

222
23

2222

2
1

22

βϕy

ϕϕϕϕ

ϕ −−+=

−Ω−−′Ω−′′′+′′−Ω+

eFM

KKmIxKmuCxLKmC

z

mmAA
 ,     (3a) 

)cos()]2()([ 222

2
1

3323 yϕ zFxuxLumumuCC =−′+−′′Ω−+′′′′+′′′  ,          (3b) 
where, 

,212
1 ∫∫= dydzzK mmm ρ ,212

2 ∫∫= dydzyK mmm ρ ,2
2

2
1

2
mmm KKK += ,0 ∫∫= dydzA ∫∫ += dydzzyKA A )( 222

0
. 

 
herein, m is the mass per unit length, I is the polar mass moment of inertia per unit length about the x axis. u, φ de-
note flap displacement in direction z and torsional angle, respectively. Cij are the cross sectional stiffness. The CAS 
used here consists of [θ] 2n in the top side, and [−θ ] 2n in the bottom side, with ply number being 6, ply thickness be-
ing 0.127×10−3 m. 
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2.3  Equations of motion for stall flutter 
Considering costant pitch motion, the nonlinear aerodynamic aerodynamic forces[11], lift (L), moment (Mc) and 
drag (D), of the cross-section illustrated in figure 1(b), are simplified and reduced to: 

)( 2
2
01

2
02

1
LLL CVCVSL += ρ , )( 2

2
01

2
02

1
MMMC CVCVSM += ρ , )014.0( 2

2
0

2
02

1
DCVVcD += ρ      (4) 

 
where the nonlinear items are: 
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herein, nonlinear parts in nonlinear items can be expressed as: 
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where z =L denotes lift, and z =M denotes moment respectively. Other related coefficients can be found in reference 
[6]. So the equations of the stall flutter system are depicted as: 
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3. Reduced equations and structual damping 
3.1 Reduced equations of motion 
Towards the goal of solving the equations as given by Eq. (3), the following steps of discretization will be 
implemented. The first step consists of representation of displacement functions in the form: 
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T= ;                    (7) 
 
herein, shape functions are required to satisfy the kinematics and force boundary conditions of the cantilever blade 
written as: ],,,,,[)( 4321 N

T x ϕϕϕϕϕ 3=Φ , ],,,,,[)( 4321 N
T uuuuuxU 3= , where beam functions φj and uj , for a 

cantilevered beam, can be found in reference[12]. 
Substituting Eq. (7) into Eq.(3) and carrying out the indicated variations and the required integration, result in the 

equation governing the motion of the system: 

PNPNPN QqKqM =+  ,                           (8) 
 
where MPN, KPN, and QPN are the NN 22 ×  coefficient matrices, and T

uqqq ],[ ϕ= . 
 
3.2 Calculation and integrating of structural damping 
Modal damping ratio of composite cross-section beam is defined as ratio of dissipated energy to maximum strain 
energy in the cycle of vibration. Reference [13] studied the local (plate) /global (beam) vibration and damping be-
havior of composite thin-walled box member subjected to vibratory environment. Based on above theories, refer-
ence [5] gave a structural analysis model which can determine the influences of different order modal damping fac-
tors for different structural and material parameters. To study the flexural vibration of the slender blade, the paper 
adopts another method to compute structural damping as depicted in reference [14]. Structural damping can be ex-
pressed in terms of an equivalent viscous damping matrix as follows: 
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where ω1, and η1 are the first order natural frequency and the corresponding first order modal damping ratios 
respectively that can be found in reference[5]. For structural damping computation, a set of composite material pa-
rameters are given as, material density ρ=1672 kg/m3, E22=E33=8.7 GPa, E11=25.8 GPa, v12=v13=0.34, G12= G13=3.5 
Gpa.  
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Integrating structural damping Cs into Eq.(8) and carrying out the indicated variations and the required integration 
resulting in the matrix equations governing the system motion for blade tip, with NN 22 ×  damping matrix CSN , as 
follows: 

PNPNSNPN QqKqCqM =++  ,                         (10) 
where the added damping matrix CSN is given as: 
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As for solution of the equations for stall flutter as given by Eq. (6), during the integration in the process of discreti-
zation, a strip theory [6], substituting sum operation for integral operation, is used at the right-hand-side terms in Eq. 
(6). Considering in conjunction with structural discretization equations and aerodynamic equations, and integration 
with structural damping mentioned above, result in the equations governing the motion of stall flutter: 

QKXXCXM =++  ,                           (11) 
 
where X is the overall vector of generalized co-ordinates as defined in reference [6]. 
 
4. Analysis and results 
For this study, some parameters are defined: pitch angle isβ=10o, the length of the blade L=8.4455m, wind speed 
U=20 m/s, rotate speed Ω=60rpm. The cross sectional stiffness Cij, are computed and listed in Table 1. The influ-
ences of ply angles are investigated and demonstrated.  
 

Table 1.  The cross sectional stiffness (Nm2) against ply angles 
 

Ply angles(o) 0 15 30 45 60 75 90 
C22 5.2588e5 6.6934e5 9.0369e5 9.0509e5 7.3084e5 5.7973e5 5.2588e5 
C23 -1.1764e-2 -2.6511e2 -3.1014e2 -1.5919e2 -3.0458e1 9.0908 3.9370e-15 
C33 1.1491 9.8755e-1 6.8027e-1 4.5931e-1 3.8620e-1 3.8264e-1 3.8749e-1 

 
To determine the responses of the aeroelastic systems in Eqs. (10-11) , Simulink can be directly applied. As for ei-
genvalue problem, take Eq.(10) for example, it will be expressed in state-space form of first order system [6], then 
numerical simulation for eigenvalue and frequency can be performed. 
 
4.1 Validity of methodology and simulation 
To testify validity of the methodology of reduced equations, considering free vibration in Eq.(3) of a cantilever 
structure, and let Ω=0rpm and as=0, the first five order characteristic natural frequencies of free vibration are com-
puted by comparison with the results of an approximate calculation (AC) method[9]. The approximate solution 
could be cast as the product of decoupled bending and twisting behavior. The angular frequency can be solved as: 
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where 

1ik=λ  and 
2k=λ ; Lmk 2)12(1 π+= , and k2 is the solution of the equation 

1)cosh()cos( 22 −=LKLk . 
 
Table 2 shows the first five order characteristic frequencies against ply angles from 0o to 90o at interval of 15o solved 
by methodology in the paper, by comparison with that of AC method. It is obvious that the results both are quite 
identical. 

Table 2.  The first five order characteristic frequencies(Hz) against ply angles 
 

Ply angles(o) 0 15 30 45 60 75 90 

1st frequency Present 0.0333 0.0298 0.0242 0.0206 0.0193 0.0192 0.0193 
AC 0.0234 0.0205 0.0165 0.0143 0.0135 0.0135 0.0136 

2nd frequency Present 0.2087 0.1840 0.1488 0.1283 0.1208 0.1204 0.1211 
AC 0.2103 0.1843 0.1486 0.1289 0.1217 0.1214 0.1221 

3rd frequency Present 0.5844 0.5192 0.4215 0.3608 0.3384 0.3372 0.3394 
AC 0.5843 0.5120 0.4129 0.3580 0.3382 0.3371 0.3393 

4th frequency Present 1.1452 1.0137 0.8219 0.7055 0.6630 0.6607 0.6650 
AC 1.1452 1.0036 0.8093 0.7016 0.6628 0.6607 0.6650 

5th frequency Present 1.8930 1.6982 1.3868 1.1748 1.0964 1.0923 1.0993 
AC 1.8930 1.6590 1.3378 1.1598 1.0957 1.0922 1.0993 
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To testify simulation validity of the Simulink process of numerical simulation in stall flutter, results of time response 
of Eq.(11), representing all the responses of all variables including structual displacement variables and aerodynamic 
variables, are displayed in figure 2(a). It is clear that all variables are stable, which can be affirmed by analysis of 
system eigenvalues. Figure 2(b) demonstrates the first ten maximum eigenvalues, all values are far less than 0, 
which obviously shows the system convergence. 

 

 
    (a)                                 (b) 

Figure 2.  Responses(a) and eigenvalues(b) of stall flutter system. 
 
4.2 The effects of ply angles on stability 
Firstly, the influences of ply angles are investigated by responses. Figure 3(a)-(b) show blade tip time responses of 
the displacements of torsion for classical flutter and stall flutter, respectively. As a rule amplitudes of classical flutter 
are higher than that of stall flutter, which indicates destructive flutter. For the ply angle of 45o, the trend shows less 
stability than others. On both sides, stability gradually increases. In ply angle 15o, it is the most stable situation. 
However in figure 4(a)-(b), it demonstrates the most maximum stability in 45o, and on both sides, stability gradually 
decreases. In ply angle 15o, it is the most instable situation. 
 
It can be demonstrated that for the given cases, time response amplitudes of the flutter vibration, either for classical 
flutter or for stall flutter, the change trends of both torsion and flap are consistent, which indicates flutter decreasing. 
For the given parameters, the system is convergent. It should be stated that the stability rules achieved here are 
meant to be generalized conclusions for all composite thin-walled blade with different cross-sections and different 
parameters, in addition to a somewhat data offset of the specific numerical point. 
 
Secondly, the influences of ply angles can be testified by eigenvalue analysis. The aeroelastic system integrated with 
structural damping has many of 4N eigenvalues or more. It is not easy to distinguish the structural eigenvalues and 
aerodynamic eigenvalues. So it is unrealistic to prove the structural stability only by eigenvalues. However, for flut-
ter system, real parts of some structural eigenvalues must be zeros, and for the whole aeroelastic system some real 
parts of eigenvalues must be negative. Furthermore, if the eigenvalues are arranged in order (denotes real parts) from 
large to small and named in order as the 1st eigenvalue, the 2nd eigenvalue, the 3rd eigenvalue, etc., eigenvalue rules 
against ply angles might be clarified under conditions of different ply angles for classical flutter and stall flutter. 
 

 
(a) Classical flutter                     (b)Stall flutter 

 
Figure 3.  Time responses of torsion against different ply angles. 
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(a) Classical flutter                     (b)Stall flutter 

 
Figure 4.  Time responses of flap bending of different ply angles, respectively 

 
Figure 5 show the first four eigenvalues, changing with ply angles from 15o~75o at interval of 15o. The results 

demonstrate that a significant variation in the aeroelastic stability can be achieved against ply angles in general. In 
addition, the results show that flutter effects are obviously different in ply angle of 45o compared with the other ply 
angles, which are consistent with distribution characteristics of responses shown in figure 3-4. For classical flutter in 
figure 5(a), the four eigenvalues in ply angles 15o are minimum,which shows the most stable state, and in in ply 
angles 45o are the the largest with the most unstable state. For stall flutter in figure 5(b), the four eigenvalues in ply 
angles 45o are almost minimum,which shows the most stable state. 

 
(a) Classical flutter                      (b)Stall flutter 

 
Figure 5.  Eigenvalues change with ply angles from 15o~75o at interval of 15o 

 
CONCLUSION 

 
Vibration and responses of classical flutter and stall flutter of thin-walled rotor blade with bending-torsional cou-
pling are investigated. Two concluding remarks can be drawn: 
(1) The coupled partial differential equations are reduced to ordinary equations by discretization, and especially 
structural damping is integrated. Time domain response based on Simulink can be performed to analyze system sta-
bility and vibration characteristics of flutter, accompanied by eigenvalue analysis. 
(2) The influences of ply angles of composite blade on stability are investigated. It is obviously demonstrated that 
different ply angles have different effects on classical flutter and stall flutter. 
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