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ABSTRACT

The fault symptoms are regarded as a sort of temporal patterns hidden in a time series. A novel method based on
time series data mining is proposed for the prediction of fan bearing fault. The time series, which is formed by large
numbers of fan bearing vibration data, is embedded into a reconstructed phase space with time-delay. In this phase
space, Genetic Algorithms are used to search for the optimal temporal pattern clusters which are the criteria to
identify temporal patterns. The optimal collection of temporal pattern clustersis then used to test the other bearing
vibration data of fan. Once the symptoms are detected, the fault is forecasted. The simulation results show the
method is efficient.
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INTRODUCTION

Fan is a sort of rotating machinery which takesn®tand other rotative parts as its main body forkwin many
large-scale industries, it is the core of equipmdot production. If the fault of fan happens, itlwot only hamper
the normal work but also bring on needless losga8h prediction of fan is beneficial for the predion and safety
of enterprise.

At present, there are few researches on fault gtiedi for rotating machinery, and the primary metHor fault
prediction is the method based on time series gtiedi Typical time series prediction methods galtguse linear
model to approximate data series, and they are effdgtive for fault prediction in linear systemowever, actual
rotating machinery system is a nonlinear systers, ttfpical methods are unfeasible for it. With thenlinear
mapping capability of neural networks, the timdeseprediction method based on neural networkdbbas used to
forecast fault of nonlinear system in recent ye@ise and Atherton used recurrent neural networKksrecast fan
fault of a chemical plant in Hongkong [1]; Zhangldris fellow used a combined neural networks mealg@redict
the fault of steam turbine [2]; Other people usérigural networks to prognose rotating machineuit {8]. But
these neural networks based prediction methodsestdt some shortages: firstly, it is difficulttyi ascertain the
framework of networks, sometimes it can but retiesexperience; secondly, the error of extrapolatingye using
neural networks is yet incapable of being analyzed.

Time series data mining (TSDM) is to extract sorseful information or knowledge unknown previousiyt katent
from large numbers of past and present time sddé&s Inspired by concepts in data mining and dycasystems,
in 1998, Richard J. Povinelli and Xin Feng presdritee TSDM framework [4~5] which focuses on ideyitify
temporal patterns for characterization and prealictif time series events. There are several sigmififeatures of
the proposed method. First, the method focuse$®identification of the temporal patterns that efmaracteristic
of the events. Second, with the temporal pattetestified, the new method focuses on event prediatather than
complete time series prediction. This allows thedjstion of complicated time series events sucthadault events
from a rotating machine. Third, the objective fuostin the optimization reflects the goal of thmei series being
examined, e.g., fault happens, and is problem Bpeci
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This paper, which is divided into six sections,gemts the fault prediction method based on TSDM $écond
section introduces the fundamental TSDM method. third section discusses the characteristic of fwgnts from
a rotating machine and the formation of time sefigsfault prediction. The fourth section estabtisithe TSDM
method for predicting fault events. The fifth seatipresents experimental results from predictimgead bearing
fault. The last section summarizes this paper.

1. Outline of the Time Series Data Mining Method
Given a training time serieg = {x,,t =1,---, N}, the method is as follows:

Step 1. The time seriésis unfolded into IR—a reconstructed phase space, called simply plse ©iere—using
time-delayed embedding. The unfolding mechanism smépinto IR®. Specifically, a set ofQ time series
Observations{x_@_l),,---)g_zT,x[_,,xt} taken fromX map to F{Xt—(Q—l)r!'"X[—zr!xt—r’xf}T’ where xis a column vector

or point in the phase spadeis the time delay, antis an integer in the interval(¢1) 7 +1, N].

Step 2. In order to correlate a temporal patteast(and present) with an event (future), a realagfunctiong(x,),
the so-called “event characterization function,défined and associated with each phase spacepoirtie event
characterization function represents the valueinfré “eventness” for the present phase space point

Step 3. Construct a heterogeneous (in the sens&thaay take multiple values) collection of temporattprn
clustersC, such thatC is the optimizer of the objective functibrwhere a temporal pattern cluskeis defined as a

ball consisting of all points within a certain @isted of a temporal patterp in the aforementioned fRphase
space and the temporal pattgriis aQ X1 vector in the same fRphase space. The objective functfomaps a
collection of temporal pattern clustefsonto the real line, thereby providing an orderiag:tllections of temporal
pattern clusters according to their ability to cwerize events. The objective functibis constructed in such a
manner that its optimizeZ is predictive of the events of interest. An evearthien predicted whenever a phase space
point x formed from a set o time series observatiobgmr,..x_z,x_r,x} is within one of the temporal pattern

clustersP that compriseC.

2. Establishment of the Time Series

Although there are many factors which result inltiaof rotating machinery, the extrinsic represgataof the
factors is mostly from the vibration of mechanisthose performance parameters can be reflected byilihetion
signals sensitively and directly. Besides, the etioh from original fault to the system fault igedual process that
means the amplitude of the present vibration isteel with the past vibration. The relationship eswthe past and
present in the amplitude sequence is the basiseofdrecast. So it is necessary to establish a denies to find the
relationship. In our paper, the vibration data afcmanism components, which is generated beforeatied faults
happened, is selected every time in order to astabiie time series where the relationship aforeimead hides.
Fig. 1 shows us a sample of the time series whic@mposed of the bearing vibration data of a oeféa, and the
small amplitudes describe the normal state, anthtiger amplitudes describe the fault state.
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Fig.1: Time series sample of fan bearing vibration Fig.2: Fan bearing vibration time series before fali

4. Fault Prediction Based On TSDM
Given a training time series of bearing vibration = {x,,t =1,---,N} . The symptoms before the fault of

machinery happens can be regarded as temporatnsaltielden in the time series, thus the TSDM metiredused
to identify them so as to achieve fault predictibig. 2 shows us a fan bearing vibration time sehiefore and
when fault happens, the six ellipses in this pet@present a six dimension temporal pattern.

4.1 Selection of the Event Characterization Function g and Definition of the Objective Function f
Definition 1.  The binary time serieg ={y, t =1,---, N} , whent is the first sampling time of fault happeps1,
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or elsey;=0 (includet are the other fault time and the normal time),ollindicates the events with a one indicating
a fault event and a zero indicating a nonevent.

The event characterization functigrrepresents the value of future “eventness” forghase space point, o for
n-steps prediction, the fault event characteriratimctionis

9(%) = Yian » 1)
where T is time delay . Wheg(x,) =1, xis a temporal pattern n-step before a fault event.

Definition 2. Let temporal pattern clusté*s{allIR Q. q (p,a)< J} and Cis the collection of temporal pattern
clusters. True positive,] is the number of fault events withihor C; false positiveff) is the number of nonevents
within P or C; true negativetf) is the number of nonevents outsiler C; false negativefy) is the number of fault
events outsid® or C.

There are two primary objects for fault predictiome is the minimal probability of failing to pretlifault and the
other object is the maximal prediction accuracyhw objective functions are defined separatelfodsws:

f,(C) = i”f @
fZ(Pi)=% (3)

p p

According to definition 2, the first objective fuian in formulation (2) is used to determine théicaety of a
collection C of temporal pattern clusters in total probabilif failing to character or predict fault; the sedon
objective function in formulation (3) can be usedrepresent the characterization or prediction rmuof a
temporal patterd. Obviously, the optimal formulation nfiC) and mak(P;) (OP, O C ) are used to achieve the

two objects of fault prediction. In order to findn@inimal set of temporal pattern clusters that ep#imizer of the
first objective function, the optimal formulationimfy(C) is subject to mia(P;), wherec(P,) is the number oP,
which comprises the set of temporal pattern clsser

4.2 Sdection of the Phase Space Dimension Q

The value ofQ, i.e., the length of the temporal pattgrrand the dimension of the reconstructed phase sjmgmce
selected based on Takens’ Theorem [8], which statdsf Q=2m+1, wherem s the original state space dimension,
the reconstructed phase space is guaranteed tpbledgically equivalent to the original state spadewever, there
are some difficulty in estimatingn for the time-delay embedding process. Estimatmig more difficult when the
original time series contains both stochastic aetdmhinistic signals since the stochastic componeay require
that m be infinite. Fortunately, as shown in [4], [9],0]1 [11], useful information can be extracted frahe
reconstructed state space even if its dimensidass than 2+1. So using the principle of parsimony, temporal
patterns with smalQ are examined first.

4.3 Search for a Single Optimal Temporal Pattern Cluster Using Genetic Algorithm

A variant of the well-known simple Genetic Algonithis employed here to search for a single optiraaiporal
pattern clusteP;”. The objective function used by GA was presentefbimulation (3) and a hash table [12] is used
to store previously calculated fitness values, ghgrachieving a computational speedup without Beicry
accuracy.

The phenotype for the G&; =[p O ], is encode as a binary string. The decoding ofjhetype is defined as

Prex = Poin 57 5
= _Mmax min 2] L+ ) 4
p=0 % P+ Pon (@)

where | is the length of thegene used to encog® p,., = MaxX, P, =Min X, andX is the training
time series. The radius is defined as
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o -1
d=—m2%215,  (5)
2 —dij=0

where 0., = Q(Prax — Prmin )+ Q is the dimension op and the Manhattan distance is chosen as the nfietric
the reconstructed phase space.

A tournament of size two is used as the selectienlanism. Mutation in the range of 0-0.1% is u3éxk stopping
criterion is convergence of the fitness valuegidsli of one is employed.

4.4 Search for an Optimal Collection of Temporal Pattern Clusters for Fault Prediction
Let Q., and Q.. be the minimum and maximum time-delay embeddingedision, respectively. The function

in formulation (2) is the objective function foretltollection of temporal pattern clusters. We dedoc an Optimal
Collection of Temporal Pattern Clusters using tl®Wing algorithm:

SetQ=Q;,
a Unfold the training time series into the recamsted IR phase space and search for an optimal temporarpat
clusterP;" in this phase space using the GA described atidetine a thresholdf3 to accept a temporal pattern

cluster, if fZ(P*i) > 3, thenP;"is regarded as a temporal pattern cluster we needepeat step a after removing
the clustered phase space points from the phase.spa

b Elseif f,(P) < B, Q=Q+1and goto step a.

c While Q>Q,,,, the search stops. Evaluate the training resiiltsecessary, select the new rangeQoéind

search again. An Optimal Collection of Temporalt&at ClustersC’ is comprised of all the optimal temporal
pattern cluster®; we need.

4.5 Fault Prediction using the Optimal Collection of Temporal Pattern Clusters C’

The optimal collection of temporal pattern clust€rsfor fault prediction is found by the search praces4.4. An
fault event is then predicted n-steps ahead where\ghase space point formed from a set of time series
observationf ., .-+ X_,.%_.%} IS within one of the temporal pattern clustefsthat compriseC’.

5. Application—Fan Fault Prediction

In this section, our method is applied to the prtoin of fan bearing fault. The fan bearing viboatidata is from
electronic engineering and compute science labgratbCase Western Reserve the vibration data Wsityeand

the data for experiment is sampled at 12KHZ. We tinéxbearing vibration data when the rotating spefedotor is

1797rp/min, 1772 r/min, 1750 r/min, and 1730 r/mispectively, then use the mixed data to form @ tseries
according to the third section in this paper. Tineetseries is actually divided to two parts, thering part and the
test part. The training time series comprised80,000 data contains 23 fault series and the d®@000 data form
the testing time series which contains 17 faulieseA sample of training time series can be sadfigd.1.

51 Training Results
For one-step fault prediction, event charactemzatunctiong(t) = Y,,, ; the range of phase space dimensiQris

[1,15] and T is set to 1; a parameter set is used for the GA:initial population size multiplier is 10, the
population size is 50, the elite count is one, ¢feme lengthl is eight, the mutation rate is 0.05% and the
convergence criterion is 0.6.
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Table 1-The Parameter of the Optimal Collection of TemporalPattern Clusters

Q 4 5 6 7 8 10

— (00266 | (0.000514 |  (0.0494 | (—0.0345 — ]
p 0000822 —| 0057 | 000298 0.0466 0.0349 — é gfllg 60'%235’7
0000719 | 00271 | 0.00154 0.0410 00140 — 1 10373 00261
—0.000411 | 00275 | 0.00412 0.0422 00561 — 1 "0oo5 00343
—0.000206 | 00252 | 0.00206 0.0380 0.0846 — | 10325 00297

0.00452 0.0337 | 0.0906 0.0713 0325°0.

0.0342 0.0487
O 03338 06462 | 05147 0.2794 0.0111 0.1019

The results of the search in training stage arevehia Table 1 and Table 2. Six temporal patterrstelts whose
dimension are 4, 5, 6, 7, 8, and 10 form the ogdtiomdlection employed to identify temporal pattergfault

symptoms). The probability of failing to charactault is 4.5%, and the prediction accuracy is 88%ich indicate
the optimal collection has a good efficacy to chamabearing fault.

Table 2-Characterization Results in training stage Table 3-Prediction Results In Testin§tage
Q | 4 5 | 6 7 8 | 10 total
Ql 4[5 6 | 7] 8] 10total bl 46 |4 | 1]0] 1]16
Wl 518 [ 3 |3 [ 1] 2]22 f,lojJo] 1 oo 1]2
fpl 0] O] 1 |0 o123 prediction ¢ py _ t,  _16 g5
Characterizaf (p) = P - 22/gg0 f accuracy t,+f, 18
n P
f, [lon aceuacy i+ T, 28 _}, probanitit o
=1 f 1 ili = n =
R = i B 1 e v A e
character fault t,+f, 23 p p ™ Tn

5.2 Testing Results

The optimal collection discovered during the tragiprocess is applied to identify temporal patteffault
symptoms) hidden in the testing time series. Whestae value xformed from a set ofQ testing data
{X—(Q—])r!”x—ZT’X—T'X} is within one of the six temporal pattern clustédrat comprise the optimal collection, ix

regarded as a temporal pattern, i.e., a fault symptalue, and the bearing fault is then forecastesistep ahead.

The results of test are seen in Table 3. The pibityabf failing to predict fault is 5.9%, and th@rediction accuracy
is 88.7%, which also indicate the feasibility ofngsthe optimal collection to predict bearing fault

5.3 Comparison of Results With TDNN

Here, we compare the above method with a time detayal network (TDNN) [6]. The TDNN algorithm was
provided with the same data set to train our ptediomethod, that is the previous 10 values ofwifieation time
series to predict the bearing fault event in néxetstep. Recall that the maximum dimension of ahyhe six

temporal pattern clusters discovered in the trgimhase was 10. This indicates the number of puewalues used
in the prediction of a bearing fault.

Table 4- Prediction Results of the Two Methods

Stage Training Testing
Characterizatio"]tp‘,:loit;'??]'“tyt%1 Predictionfparlci)??r?mtyt%f
Method A 9 A 'ng
ccuracy |character fault ccuracy predict fault
TDNN 86.2% 5.9% 78.7% 11.1%
Our Method 88% 4.5% 88.7% 5.9%

The TDNN has four layers with 10 neurons in theuinfayer, 20 neurons in the first hidden layer, b@Qirons in
the second hidden layer, and one neuron in theubldger. Sigmoid style activations functions asediin the first
three layers, and a threshold style is used imtitpeut layer. The TDNN was trained for 1000 epochs.
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Table 4 shows the results for our prediction mettaoal the TDNN. In comparing the results of the twethod, it
is clearly seen that our prediction method is sigpéo the TDNN.

CONCLUSION

The paper presented a fault prediction method basedSDM, and this method is applied to fault peéidin of fan
bearing. Different from other fault prediction metls, the method predicts fault by mining latentgeral patterns
in system, which can provide the current reseafdaudt prediction in nonlinear system with a neppeoach.
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