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ABSTRACT

Because the different batch of batch processesdiféerent raw materials and changeable control dtinds,

measurement data may lead to drift and it's diffido obtain complete sampling data at any timeinigirthe
reaction process. So a multi-way kernel T-PLS (MM5) algorithm was proposed to improve the faudigdiosis
accuracy of batch processes. This algorithm firgthjolds three dimensional process data matrixdyp@ing time
sequence, then fills process variable data accardim certain rules to form complete sample for datesing
problem, so obtained appropriate data matrix isdige fault detection by MKT-PLS algorithm. Simudatiresults
of Pensim V 2.0 simulation platform show that #hdtfdetection rate of the proposed algorithm ighar than the
other algorithm for detecting faults affect the Hiyaof final products. This algorithm is more sable to monitor
the real-time batch process.
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INTRODUCTION

Modern chemical process especially batch procegsrisimportant for industrial production. Batctoduction can
satisfy the diversified requirement of differentstamers and it has high flexibility and better emmic effect. In
order to maintain batch process in normal condigmu manufacture qualified product, process manigois
necessary and indispensable. Fault diagnosis teathnbas been studied by many scholars and expdrese are
two main approaches of fault diagnosis methoddudlieg first-principle models and process data ysial The
most popular method, multivariate statistical psscenonitoring (MSPM), can detect abnormal operagingations
and diagnosis faults without the exact modelinghaf process [1]. MSPM only needs measured datalhwtan
obtain easily by sensors in industrial field, s® it difficult to meet the requirements in moderdustrial process.
Principal component analysis (PCR) and partial least squares (PLS) [3] are basijegtion methods of MSPM
for continuous process. They use normal historycgse data to build predefined model, detect faith whe
real-time measurement data. The major advantagtfseeé methods are their abilities to handle lamgeber of
highly correlated variables, measurement errorsl mmssing datd”. In batch process, measurement data is
3-dimensional form containing the following infortimn: batch number, variable number and sample rumb
Many scholars studied batch process and proposesllext strategies to solve the problems, such aléi-may
PCA, multi-way PLS, multi-stage PCA, multi-stageRIRecently, Zhou [4-6] et al proposed an improstedcture,
namely total projection to latent structures (T-RL®r fault diagnosis in continuous process. Thegke a further
decomposition for the PLS model which has bettercethan PCA when detecting quality-relevant fadhao [7]
et al give a suitable extension for T-PLS modelgkd space total projection to latent structureS{BLS) and multi
space total projection to latent structures (MsBPilvere analyzed and compared in their paper. Tisey T-PLS
model to monitor continuous or batch process amdilsition results showed that the new method’s fdetecting
rate is higher than the other’s.

However, both Zhou and Zhao's T-PLS models arealimaodels. It's difficult to obtain accurate faditignosis
result of actual industrial process when measurémata have strong nonlinear relationship. Kernekfion is a
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kind of tools which have better effect when dealvith nonlinear data. So a multi-way kernel T-PL&oaithm was
proposed in this paper. This algorithm use keraptfion to solve the nonlinear problem of inputaday projecting
them onto feature space first, and then build lifeBRLS model with the kernel matrix in high-dimensal feature

space. Hotelling's 2 statistic (including? ,T02 ancﬂ',z) andQ, statistic are structured and calculated in foufedsnt

subspace to detect different kind fault respecjivBecause process data and quality data were quegsed by
kernel function, quality-relevant fault detectioate of multi-way kernel T-PLS algorithm is highdrah that of
multi-way T-PLS.

This paper is organized as follows. Multi-way kdrid’LS model is proposed in section 2. Then, dualevant
fault diagnosis methods based on Multi-way kernBPIL'E model is described in section 3. In sectioa dimulation
study of penicillin fermentation process based endin V 2.0 is illustrated and results of Multi-wegrnel T-PLS
model and Multi-way kernel PLS model are compaFédally, conclusions are presented in the lasti@ect

MULTI-WAY KERNEL T-PLS(MKT-PLYS)

Similar to the multi-way principal component anadyand multi-way partial least squares method, irwdly kernel
T-PLS modeling contains three steps. Firstly, thdmeensional batch process data switch to two dsieral plane
data according to the order of sampling time. Sdiyorinearize the process data by projecting thamo high
dimensional feature space using kernel functionalyi, build linear T-PLS model in high-dimensiorfalature
space, calculate monitoring statistics and thefresponding control limits, compare them detectligueelevant
fault.

Batch Process Data Preprocessing

Batch process’ measurement data is stored as steygio data matrix, and it contains the followinfprmation of
process: batch number, measured variables numigesampling number. Commonly, there are two metttods
make the stereoscopic data matrix planarizatiorst,Hbartition stereoscopic matrix is determinedoading to the
batch number. Second, partition stereoscopic mariletermined according to the sampling numbethils paper,
we choose the second method to preprocess batcsuredadata. We cut the stereoscopic matrix X ilit2s in
accordance with the sampling time sequence fronfittsiesampling point to the K-th sampling pointdathen tile
them into a plane data matrix orderly. The schemaén of batch process data preprocess showeg. ds f

Fig.1: Schematic plan of stereoscopic data matrix preprocessing

| * KJ dimensional data matrix can obtain from the abaweglanation method, but it’s very difficult to ugem

1 M

1 2 K
modeling directly due to its huge dimension. Sittee k-th sample of the j-th variable has been nrealdutimes

totally and thd times measurements obey certain statistical cteistits, so it can use the average value of
|

weighted moving  window X =|— I_l ()gjkA'_i) instead. | *KJ dimensional data matrix simplify
=1

tol* KJ dimensional row vector. Partitioning and rearraggine row vector according the ordir2J,TIKJ,

new process data matrix obtain as the followingnide.
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(1)
ZK—l).Hl 7((K—1)5|+2 7KJ

339



Zhao Xiaogiang et al J. Chem. Pharm. Res., 2014, 6(7):338-346

As quality data can only be measured at the ereholi batch off-line, sb* M dimensional data matrix Y can be
obtained aftet batch production. Calculate the average valuenafl foroduct quality measurements from first batch

tol -th batch by weighted moving window. New quaIitytajamatrixv can calculate as the following formula,

|
wherey 2% I_l (y,,A'"™.

1=1

Y=[y, ¥y, IDYV,] )

It can detect fault for the batch process aftercstiring kernel T-PLS model using process dataim¥rand quality

data matriXY . But it is worth noting that outliers exist at basatch process, in order to ensure the fault tletec
accuracy of batch process fundamentally, apprapabgorithms should be used to remove outlier value

Multi-way Kernel T-PLS
Compared with continuous process, batch proceda’idastored stereoscopically. So it's necessapianarize the

stereoscopic data before modeling. Using the abwthod obtain process data maband quality data matriX ,
and then build MKT-PLS model with these matrix. €Eotheorem states that “a set of training data ihatot
linearly separable, one can with high probabilitgnsform it into a training set that is linearlypaeable by

projecting it into a higher dimensional space vaae non-linear transformation”[8]. Kernel matkx= ® dcan

obtain and be used to build linear T-PLS modelféadt diagnosis after process data ma)_(imapping to a high
dimensional feature space by radial basis functimnlinear model MKT-PLS between input-output spageal to
linear model MT-PLS between feature-output spaeeretically. Concrete steps to establish MKT-PLSlelare
as follows:

Stepl: obtaiK * J dimensional process data matandl* M dimensional quality data matrk using above
method

Step2: obtain process data maf(band quality data matrhz by standardizing_( andY ;

Step3: project matriX onto feature spade, @ :x OR" - ®(x) 0 F, structure kernel matrik = ®'® ;
Step4: i =1, K, =K, Y, =Y, extract converget fromY; ;

(1)U, equal to a column of randomly;

@t =Ku, ¢ < ¢/t

@ =Y

@Y =Y Gy u/u;

(5)verdict: ifU; convergence, go to Step®therwise, go to (1),

Step5: calculate the loading matrixkf: p. = KiT'q :
Step6: extract all principal component, calculat®, TU and Q;
— T —
(1)Ki+l_Ki _1% n ’ Yi+1_Y_ lr'd~
(2)i =i +1, repeat Step4 and Step5 until all principal congmrhave been extracted, the number of principal
component determined by cross validation;

@)T =[t, Mk, ], P=[p,Hp,].U =[u, Mu,],Q=[q, ITq,] ;
Step7: K =TP" + E,Y =UQ' + F;
Step8: run PCA algorithm ofP™ , TP" = t, pyT + T, R, the number of principal component is A-1;

Step9: run PCA algorithm on EE =T, E’T + E , the number of principal component refer to [9].

Process data matr)Ak and quality data matrhz of batch process can be decomposed as follows aftering
MKT-PLS algorithm.
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X=t,p +LR +TP+E 3)
YA:fy+F 4)
E =E(I-PP") ()

Wherety,TO andT, are score vectors of different subspacds,is final residual that represents noise. The
decomposition of MKT-PLS model is shown in fig.2.

‘PT
Pl iz tandar- kernel
o o] g gl ] PLS H -
T
T-PLS
P’ Py P’
IR
ty To Tr

Fig.2: Decomposition structure of MK T-PL S model

FAULT DETECTION STEPSBASED ON MKT-PLS

Fault detection based MKT-PLS model includes tvepst first, establish MKT-PLS model using normaitdiical

offline data, compute monitoring statistics andedeiine their corresponding control limits; Secocalculate D and
Q statistic using online measured data, detectingity-relevant fault in real time by comparingtigic and its
control limit.

Data Supplement

Because batch process’ measurement data is steredhale, it's hard to get the whole sample unté thatch
production process finish. This is a disadvantadgeal-time monitoring for batch process. Howewsly detecting
fault in time and taking appropriate actions canidwinnecessary losses in actual industrial précingirocess. In
order to solve this problem, Nomikos et al[10] pyepd the following three filling algorithm to pretlidefaults
from current time to the end of entire batch prec€%)0 value fill method, the data of future issimered not
deviating from the average trajectory; (2)curreatue fill method, the data of future is considehedve the same
deviation from the average trajectory; (3) projectimethod, the data of future is determined bycilmreent value
projected onto a particular space. This paper cliosehird method to fill the unsampled data * bé tprocess

X1 )(2 cee XJ
variable data matriX = _' _' ' _ ' , SO as to obtain a complete sample of batch psoftes
Xast  Nae2 X(k+1)J
* * *

fault detection.

SatisticsAnd Control Limits

For batch process, there are many differences ketveach batch, such as different raw materialsngeth
production environment, operating point drift ofuggments. All of these should be considered calefokfore
establishing MKT-PLS model. Weighted moving windavas used to obtain the latest normal batch process’
weighted average measurement data mrixand then it was mapped to feature space nontlineatain kernel
matrixK , score and residual vectorléfare as the following formula.
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t,=gRKOR
t, =P (P-pogR KO R* ©
Tt =P (I-PR)KOR

E =(1-RP)(I-PR)OR

MKT-PLS model’s statlstldf2 T TzandQ are calculated using the weighted average valdenofmal batch

history data. If the measured variables conformdmmal distribution, statistics and its correspaoigdtontrol limits
are shown in Table.1.

Table.l: Satisticsand its corresponding contral limits

Statistic computational formula control limits fouha Statistic _computational formula control limitsmula
= T A n+1 — e A(n*-1)
T? AT —F _ T? TAT 2oy JEo
y y y 'y n 1n-1ga r tr r tr n(n_ A) A.n-A.a
2
—, e (A+D)(n" -1) —~ =12 2
T, LA Ve Q IE| 9Xe,

n(n _ A+ 1) A-1,n- Atla

Off-line M odeling

MKT-PLS algorithm calculates four statistics anceithcorresponding control limits in different subase to
monitor the batch process, detect fault by anafyzind comparing them in sub-space monitoring clsantilar to
T-PLS algorithm, the main variation of process uskghalanobis distance to measure while the resigagl of
process uses Euclidean distance. The detailed stepsodeling offline based on MKT-PLS algorithm aae
following.

Stepl: obtain the latektbatch process data matdand quality data matri¥ using above methad
Step2: obtain process data maf(band quality data matrhz by standardizing_( andY ;

Step3: project matrix)A( onto feature spacéd~ non- Iinearly, structure kernel mati = ®'d .
Step4: decompose kernel matkix, calculatdy, py, P, T,P, E, Yy, q, F;

Step5 structure stat|st|c'E T0 ,'I'r2 andQ,, choose their corresponding control limits acaogdiable.1 with
suitable degrees of freedom and confidence.

On-line Detection

Since the complete sampling of batch process cabtain until the whole reaction finished, in orderrealize

real-time monitoring, unsampled values must bedilas the above method before detecting fault. MK$ model

uses the complete sample matrix which has beew fillith appropriate data as input, calculates roaniy statistics

in four specific sub-space, compares them withr tb@iresponding control limits to detect fault. T¢wncrete steps
of on-line detection are as follows:

Stepl: project the measured vdlXg, X,, [IIX, ]of sample timeIT, 2T ,[IIJ(k— 1)T, kTonto a special space,
obtain  the value [X,,,,IX,] of sample time (k+1)T,0JKT . The complete
matrix X ., =[ X}, X,, X, X,,,,I] X, ]has obtained, the concrete algorithm can refeB% [

Step2: standardize process variable mafrjx,, to )2

A

new’

Step3: use X, as MKT-PLS model's input , calculate  the  following  value
resp(:"Ctivebty, new’ p v newT 0 new P 0 newT r newP, r ne'\NE, r neV\}J, y nevﬂ, y ne\z!/: ;

Step4: calculate statistlc?;yznew T o T oew@ndQ, oy respectively;

Step5: detect quality-relevant fault: if statlsﬂg§ewand6r beyond their corresponding control limitshe fault

new

can affect final product’s quality;
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- 2
andT,

. .. T 2
if statistics T Fnew

onew beyond their corresponding control limitshe fault can’t affect final product’s quality;
SIMULATION RESULTSAND ANALYSIS

Penicillin fermentation process is a typical bapcbduction process, which is widely used to evauhae control
strategies and algorithms for batch process. Thtshbprocess comprises nine variables (ventilatide, stirring
power, acceleration of the bottom stream, tempezadfi the fermentation vessel, pH, acceleratiorthef cooling
water flow, medium volume, oxygen saturation andbga dioxide concentration) and four quality vaheb
(penicillin concentration, substrate concentratisiomass concentration and reaction heat). Thigipages Pensim
V 2.0 simulation software for testing, which wasveleped by Professor Cinar and his research teattiradis
Institute of Technology from 1998 to 2002 [11], BemV 2.0 simulation software has high practicduea It can
not only simulate penicillin fermentation processlistically, but also obtain a series of paransetef the
fermentation process easily. Pensim V 2.0 has becamuseful tools to validate scientific approaetsdal on
data-driven for diagnose fault and monitor batcbcpss[12-14]. Initialization relevant parametersuith be
executed before simulating penicillin fermentatgncess using Pensim V 2.0 software. The defalliegaand the
range of relevant parameters are shown in TabtelZrable.3.

Table.2: Default value and value range of Pensim V 2.0

Variable name Unit Default value  Value range
substrate concentration G/L 15 14-18
oxygen concentration G/L 1.16 1-1.2
biomass concentration G/L 0.1 0
penicillin concentration G/L 0 0
medium volume L 100 100-104
carbon dioxide concentration G/L 0.5 0.5-1
hydrogen ion concentration MOL/L o)
pH 5 4555
temperature of the fermentation vessel K 298 296-30
Table.3: Control parameter of PensmV 2.0
Variable name Unit  Default value Range
ventilation rate /H 8.6 8-9
stirring power W 30 29-31
acceleration of the bottom stream  L/H 0.042 0.03849
substrate heat K 296 295-296
pH 5 4.95-5.05
reaction heat K 298 297-298

Penicillin fermentation process simulation studgdan Pensim V 2.0 contains those steps: set itied iralues of

variables and parameters, set the controller op&aiure and pH, set reaction conditions (normaltjffaexport
real-time monitor plot of each process variablgyagk sample data matrix of each process variakie. detailed
steps see Fig.3.

Set reaction time Fault Set fault

condition

Set sampling
time

Set fault type

Set initial value

!

Set parameter

Set temperature
controller

Set pH controller

Set working
condition

4
Set fault
amplitude and
introduce time

.
Normal

Out- put plot or
process data

Fig.3: Flow chart of Penicillin fermentation process based on Pensm V 2.0
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The actual penicillin fermentation process oftenurcvalve leakage or pump failure, Pensim V 2.0utate three
types of failures during the actual fermentationgaess. The fault’s introduction time and end tina@ de set

artificially, step and ramp signal can be set asféult type, the default faults of Pensim V 2.0 described in Table
4,

Table 4 The Default fault of Pensim Vv 2.0

Fault Number Fault Description Fault type
Fault 1 Aeration Rate Fault Step / Ramp
Fault 2 Agitator Power Fault Step / Ramp
Fault 3 Substrate Feed Rate Fault  Step / Ramp

In order to obtain different batch’'s process vddab 20 batches of normal penicillin fermentatiorogess
simulation have been done by adjusting the valueawh parameter in Table.2 and Table.3. Fig.4 shtws
trajectory of each process variable of peniciltmfientation process in normal condition based asiReV 2.0.
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Fig.4 :Trajectory of each processvariable of penicillin fermentation process (normal condition)

The 20 batches normal process data were used i dffiline modeling, and control limit of each mitaring

statistic determined as section 3.3. In order t@iakfault samples, ‘fault introduce time, faultdetime, fault type,
fault amplitude’ should be set in type 9 of Penai®.0 initialization. This paper set simulation #m400h,
sampling time: 0.2h, fault introduce time: 200hylfaend time: 400h, fault type: step, fault ampli¢u -50. 2000*18

dimensional fault sample data mat¥,,, ;scan obtain after the whole process finished. Ttajgof each process
variable of penicillin fermentation process in fa@ilcondition based on Pensim V 2.0 are showedgrbF
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Fig.5: Trajectory of each processvariable of penicillin fermentation process (fault 3 condition)

Use the above fault data mati,q,, ;85 MKT-PLS model’s input, process monitor diagreasesl on MKT-PLS is

showed in Fig.6. In order to highlight the supétioof proposed method, comparison algorithm was with the
same input. Fig.7 is process monitor diagram basedKPLS.

oo

(@) (b)

750 1000 50 1500 TS0
Samples

Samples

(@) (b)
Fig.7: Monitor diagram based on MKPLS
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Obviously, fault detection rate of MKT-PLS modelhigiher than that of MKPLS model, because MKT-PL&ded
decompose the orthogonal portion of variation frnmjection subspace and obtain real noise in raesislibspace.

CONCLUSION

This paper proposed a suitable model, MKT-PLS wiischn appropriate extended of KT-PLS algorithmgépect
fault for batch process. Fault diagnosis based &THMLS must obtain appropriate data matrix first,seme data
preprocess method was introduced and used. Whats, mue to the shortcoming that complete sampi& ohtain

until whole process finish, supplementary data neplie was used to fill the blank. Simulation resuf penicillin

fermentation process show that, MKT-PLS algorithas tigher fault detection rate, which means thatnitore

suitable to detect quality-relevant fault and monkiatch process real-time.
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